Как упростить выражение информатика

Как упростить выражение информатика

Логические операции (конъюнкция, дизъюнкция, инверсия)

Таблица истинности: К онъюнкция (логическое умножение, логическое И) обозначается /\

(например, А /\ В) либо & (например, А & В); в языках программирования обозначение «And».

Таблица истинности: Дизъюнкция (логическое сложение, логическое ИЛИ) обозначается \/ (например, А \/ В);

в языках программирования обозначение «Or».

Инверсией двух высказываний называется новое высказывание, которое истинное тогда и только тогда, когда исходное высказывание ложно.

Название логической операции

Конъюнкция, логическое умножение

Дизъюнкция, логическое сложение

тогда и только тогда, когда

эквивалентность, эквиваленция, равнозначность

Соединим оба утверждения в одно высказывание:

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Составим таблицу истинности на полученное высказывание:

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Учитывая то, что предположения двух друзей подтвердились, а предположения третьего неверны, запишем и упростим истинное высказывание

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика
Высказывание Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаистинно только при Ш=1, А=0, Х=0.

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Пусть дана таблица истинности для некоторой логической функции Z(X,Y):

Построим истинностную таблицу сложного высказывания :

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Очевидно, истинностная таблица будет содержать Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикастрок. Скобки применяются, если нарушаются естественный порядок операций: отрицание, конъюнкция, дизъюнкция, импликация, двойная импликация. Скобки (А ® В) указывают на то, что сначала нужно выполнить импликацию, затем найти (А ® В) Ù С. Скобки в выражении Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаможно опустить. Заключительной операцией в построении истинностной таблицы для S будет дизъюнкция двух высказываний: (А ® В) Ù С и Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика.

Источник

Информатика. 10 класс

Конспект урока

Информатика, 10 класс. Урок № 12.

Тема — Преобразование логических выражений

Перечень вопросов, рассматриваемых в теме: основные законы алгебры логики, преобразование логических выражений, логические функции, построение логического выражения с данной таблицей истинности и его упрощение, дизъюнктивная и конъюнктивная нормальная форма, совершенная дизъюнктивная нормальная форма (СДНФ), совершенная конъюнктивная нормальная форма (СКНФ).

Глоссарий по теме: основные законы алгебры логики, логические функции, дизъюнктивная и конъюнктивная нормальная форма, совершенная дизъюнктивная нормальная форма (СДНФ), совершенная конъюнктивная нормальная форма (СКНФ)

Основная литература по теме урока:

Л. Л. Босова, А. Ю. Босова. Информатика. Базовый уровень: учебник для 10 класса

— М.: БИНОМ. Лаборатория знаний, 2017 (с.197—209)

Открытые электронные ресурсы по теме:

Теоретический материал для самостоятельного изучения.

Способ определения истинности логического выражения путем построения его таблицы истинности становится неудобным при увеличении количества логических переменных, т.к. за счет существенного увеличения числа строк таблицы становятся громоздкими. В таких случаях выполняются преобразования логических выражений в равносильные. Для этого используют свойства логических операций, которые иначе называют законами алгебры логики.

Основные законы алгебры логики

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Справедливость законов можно доказать построением таблиц истинности.

Пример 1. Упростим логическое выражение Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Последовательно применим дистрибутивный закон и закон исключенного третьего:

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

В общем случае можно предложить следующую последовательность действий:

Пример 2. Упростим логическое выражение Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика.

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Здесь последовательно использованы замена операции импликация, закон де Моргана, распределительный закон, закон противоречия и операция с константой, закон идемпотентности и поглощения.

Аналогичные законы выполняются для операции объединения, пересечения и дополнения множеств. Например:

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Пример 3. На числовой прямой даны отрезки B = [2;12] и C = [7;18]. Каким должен быть отрезок A, чтобы предикат Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикастановился истинным высказыванием при любых значениях x.

Преобразуем исходное выражение, избавившись от импликации:

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

A, B, C — множества. Для них можно записать Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика(U — универсальное множество).

Будем считать, чтоКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика.

Тогда Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика, причем это минимально возможное множество А.

Так как множество B — это отрезок [2;12], а множество Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика— это промежутки Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаиКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика, то пересечением этих множеств будет служить промежуток Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика. В качестве ответа мы можем взять этот промежуток, а также любой другой, его включающий.

Пример 4. Для какого наименьшего неотрицательного целого десятичного числа а выражение

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикатождественно истинно (т. е. принимает значение 1 при любом неотрицательном целом значении десятичной переменной х)? Здесь & — поразрядная конъюнкция двух неотрицательных целых десятичных чисел.

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Перепишем исходное выражение в наших обозначениях и преобразуем его:

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Рассмотрим предикат Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика. В числе 2810=111002 4-й, 3-й и 2-й биты содержат единицы, а 1-й и 0-й — нули. Следовательно, множеством истинности этого предиката являются такие числа х, у которых хотя бы один из битов с номерами 4, 3 или 2 содержит единицу. Если и 4-й, и 3-й, и 2-й биты числа х нулевые, то высказывание Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикабудет ложным.

Рассмотрим предикат Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика. В числе 4510=1011012 5-й, 3-й, 2-й и 0-й биты содержат единицы, 4-й и 1-й — нули. Следовательно, множеством истинности этого предиката являются такие числа х, у которых хотя бы один из битов с номерами 5, 3, 2 или 0 содержит единицу. Если и 5-й, и 3-й, и 2-й, и 0-й биты числа х нулевые, то высказывание Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикабудет ложным.

Рассмотрим предикат Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика. В числе 1710=100012 3-й, 2-й и 1-й биты содержат нули, 4-й и 0-й — единицы. Побитовая конъюнкция 17 и х будет равна 0, если в числе х 4-й и 0-й биты будут содержать нули. Множество истинности этого предиката — все х с нулями в 4-м и 0-м битах.

По условию задачи надо, чтобы Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика.

Запишем это выражение для рассмотренных множеств истинности:

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Так как Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика, примем Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика.

Объединением множеств M и N являются все двоичные числа, у которых хотя бы один из битов с номерами 5, 4, 3, 2, 0 содержит единицу. Пересечением этого множества с множеством K будут все двоичные числа, у которых биты с номерами 4 и 0 будут заняты нулями, т.е. такие двоичные числа, у которых хотя бы один из битов с номерами 5, 3, 2 содержит 1. Все эти числа образуют множество А.

Искомое число a должно быть таким, чтобы при любом неотрицательном целом значении переменной х: Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика, и, кроме того, оно должно быть минимальным из возможных. Этим условиям удовлетворяет число 1011002 = 4410.

Значение любого логического выражения определяется значениями входящих в него логических переменных. Тем самым логическое выражение может рассматриваться как способ задания логической функции.

Для n=2 существует 16 различных логических функций. Рассмотрим их подробнее.

Источник

Как упростить выражение информатика

При упрощении сложных высказываний рекомендуется использовать основные законы преобразования логики и свойства констант.

Пример 1.

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

(вынесем А за скобки и далее по закону исключения третьего)

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

1 способ:

Применим закон дистрибутивности:

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

2 способ:

Перемножим скобки (как в алгебре чисел) и далее на основании закона дистрибутивности.

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

1 способ:

представим Х как Х *1, а 1 распишем как У + не У.

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

законы идемпотентности позволяют добавлять в выражение любое из уже имеющихся в нем слагаемых, добавим к полученному выражению Х&У

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

2 способ:

Так как умножение выполняется первым, то можно поставить скобки, а далее по закону дистрибутивности:

Х + не Х * У = Х + (не Х * У) = (Х + не Х) * (Х + У) = 1 * (Х + У) = Х + У

2 способ:

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Применим закон де Моргана

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Попробуйте упростить высказывания:

Источник

Как упростить выражение информатика

Изучить основы алгебры логики.

Задачи лабораторной работы

В результате прохождения занятия студент должен:

Общие теоретические сведения

Основные понятия алгебры логики

Логической основой компьютера является алгебра логики, которая рассматривает логические операции над высказываниями.

Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.

Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Не всякое предложение является логическим высказыванием.

Пример. предложение «Давайте пойдем в кино» не является высказыванием. Вопросительные и побудительные предложения высказываниями не являются.

Высказывательная форма – это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.

Высказывания, образованные из других высказываний с помощью логических связок, называются составными (сложными). Высказывания, которые не являются составными, называются элементарными (простыми).

Чтобы обращаться к логическим высказываниям, им назначают имена.

Пример. Обозначим через А простое высказывание «число 6 делится на 2», а через В простое высказывание «число 6 делится на 3». Тогда составное высказывание «Число 6 делится на 2, и число 6 делится на 3» можно записать как «А и В». Здесь «и» – логическая связка, А, В – логические переменные, которые могут принимать только два значения – «истина» или «ложь», обозначаемые, соответственно, «1» и «0».

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Обозначение операцииЧитаетсяНазвание операцииАльтернативные обозначения
¬НЕОтрицание (инверсия)Черта сверху
ИЛИДизъюнкция (логическое сложение)+
Если … тоИмпликация

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика


НЕ
Операция, выражаемая словом «не», называется отрицанием и обозначается чертой над высказыванием (или знаком ¬). Высказывание ¬А истинно, когда A ложно, и ложно, когда A истинно.

Пример. Пусть А=«Сегодня пасмурно», тогда ¬А=«Сегодня не пасмурно».

И Операция, выражаемая связкой «и», называется конъюнкцией (лат. conjunctio – соединение) или логическим умножением и обозначается точкой « • » (может также обозначаться знаками Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаили &). Высказывание А • В истинно тогда и только тогда, когда оба высказывания А и В истинны.

(или плюсом). Высказывание АКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаВ ложно тогда и только тогда, когда оба высказывания А и В ложны.

. Высказывание А↔В истинно тогда и только тогда, когда значения А и В совпадают.

ЛИБО … ЛИБО Операция, выражаемая связками «Либо … либо», называется исключающее ИЛИ или сложением по модулю 2 и обозначается XOR или Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика. Высказывание АКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаВ истинно тогда и только тогда, когда значения А и В не совпадают.

Пример. Высказывание «Число 6 либо нечетно либо делится без остатка на 2» является истинным, а высказывание «Либо число 6 четно либо число 6 делится на 3» – ложно, так как истинны оба высказывания входящие в него.

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика.

Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания («не»), затем конъюнкция («и»), после конъюнкции – дизъюнкция («или») и исключающего или и в последнюю очередь – импликация и эквиваленция.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).

Пример. Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика– логическая функция двух переменных A и B.

ABКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика
11011110
10001001
01101101
00100110

Опираясь на данные таблицы истинности основных логических операций можно составлять таблицы истинности для более сложных формул.

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 3).

ABКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика
1110
1001
0101
0001

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 5).

ABКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаКак упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатикаC
1100000
1001011
0110101
0011000

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Поскольку любая логическая операция может быть представлена в виде комбинации трех основных, любые устройства компьютера, производящие обработку или хранение информации, могут быть собраны из базовых логических элементов, как из “кирпичиков”.

Логические элементы компьютера оперируют с сигналами, представляющими собой электрические импульсы. Есть импульс – логический смысл сигнала – 1, нет импульса – 0. На входы логического элемента поступают сигналы-значения аргументов, на выходе появляется сигнал-значение функции.

Алгоритм построения логических схем.

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Логические законы и правила преобразования логических выражений

Как упростить выражение информатика. Смотреть фото Как упростить выражение информатика. Смотреть картинку Как упростить выражение информатика. Картинка про Как упростить выражение информатика. Фото Как упростить выражение информатика

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *