Большие данные что это такое простыми словами
Что такое Big Data простыми словами? Применение и перспективы больших данных
Через 10 лет мир перейдет в новую эпоху — эпоху больших данных. Вместо виджета погоды на экране смартфона, он сам подскажет вам, что лучше одеть. За завтраком телефон покажет дорогу, по которой вы быстрее доберетесь до работы и когда нужно будет выехать.
Под влиянием Big Data изменится все, чего бы не коснулся человек. Разберемся, что это такое, а также рассмотрим реальное применение и перспективы технологии.
Навигация по материалу:
Что такое Big data?
Большие данные — технология обработки информации, которая превосходит сотни терабайт и со временем растет в геометрической прогрессии.
Такие данные настолько велики и сложны, что ни один из традиционных инструментов управления данными не может их хранить или эффективно обрабатывать. Проанализировать этот объем человек не способен. Для этого разработаны специальные алгоритмы, которые после анализа больших данных дают человеку понятные результаты.
В Big Data входят петабайты (1024 терабайта) или эксабайты (1024 петабайта) информации, из которых состоят миллиарды или триллионы записей миллионов людей и все из разных источников (Интернет, продажи, контакт-центр, социальные сети, мобильные устройства). Как правило, информация слабо структурирована и часто неполная и недоступная.
Как работает технология Big-Data?
Пользователи социальной сети Facebook загружают фото, видео и выполняют действия каждый день на сотни терабайт. Сколько бы человек не участвовало в разработке, они не справятся с постоянным потоком информации. Чтобы дальше развивать сервис и делать сайты комфортнее — внедрять умные рекомендации контента, показывать актуальную для пользователя рекламу, сотни тысяч терабайт пропускают через алгоритм и получают структурированную и понятную информацию.
Сравнивая огромный объем информации, в нем находят взаимосвязи. Эти взаимосвязи с определенной вероятностью могут предсказать будущее. Находить и анализировать человеку помогает искусственный интеллект.
Нейросеть сканирует тысячи фотографий, видео, комментариев — те самые сотни терабайт больших данных и выдает результат: сколько довольных покупателей уходит из магазина, будет ли в ближайшие часы пробка на дороге, какие обсуждения популярны в социальной сети и многое другое.
Методы работы с большими данными:
Машинное обучение
Вы просматриваете ленту новостей, лайкаете посты в Instagram, а алгоритм изучает ваш контент и рекомендует похожий. Искусственный интеллект учится без явного программирования и сфокусирован на прогнозировании на основе известных свойств, извлеченных из наборов «обучающих данных».
Машинное обучение помогает :
Анализ настроений
Анализ настроений помогает :
Анализ социальных сетей
Анализ социальных сетей впервые использовали в телекоммуникационной отрасли. Метод применяется социологами для анализа отношений между людьми во многих областях и коммерческой деятельности.
Этот анализ используют чтобы :
Изучение правил ассоциации
Люди, которые не покупают алкоголь, берут соки чаще, чем любители горячительных напитков?
Изучение правил ассоциации — метод обнаружения интересных взаимосвязей между переменными в больших базах данных. Впервые его использовали крупные сети супермаркетов для обнаружения интересных связей между продуктами, используя информацию из систем торговых точек супермаркетов (POS).
С помощью правил ассоциации :
Анализ дерева классификации
Статистическая классификация определяет категории, к которым относится новое наблюдение.
Статистическая классификация используется для :
Генетические алгоритмы
Генетические алгоритмы вдохновлены тем, как работает эволюция, то есть с помощью таких механизмов, как наследование, мутация и естественный отбор.
Генетические алгоритмы используют для :
Регрессионный анализ
Как возраст человека влияет на тип автомобиля, который он покупает?
На базовом уровне регрессионный анализ включает в себя манипулирование некоторой независимой переменной (например, фоновой музыкой) чтобы увидеть, как она влияет на зависимую переменную (время, проведенное в магазине).
Регрессионный анализ используют для определения:
Data Mining — как собирается и обрабатывается Биг Дата
Загрузка больших данных в традиционную реляционную базу для анализа занимает много времени и денег. По этой причине появились специальные подходы для сбора и анализа информации. Для получения и последующего извлечения информацию объединяют и помещают в “озеро данных”. Оттуда программы искусственного интеллекта, используя сложные алгоритмы, ищут повторяющиеся паттерны.
Хранение и обработка происходит следующими инструментами :
Реальное применение Big Data
Самый быстрый рост расходов на технологии больших данных происходит в банковской сфере, здравоохранении, страховании, ценных бумагах и инвестиционных услугах, а также в области телекоммуникаций. Три из этих отраслей относятся к финансовому сектору, который имеет множество полезных вариантов для анализа Big Data: обнаружение мошенничества, управление рисками и оптимизация обслуживания клиентов.
Банки и компании, выпускающие кредитные карты, используют большие данные, чтобы выявлять закономерности, которые указывают на преступную деятельность. Из-за чего некоторые аналитики считают, что большие данные могут принести пользу криптовалюте. Алгоритмы смогут выявить мошенничество и незаконную деятельность в крипто-индустрии.
Благодаря криптовалюте такой как Биткойн и Эфириум блокчейн может фактически поддерживать любой тип оцифрованной информации. Его можно использовать в области Big Data, особенно для повышения безопасности или качества информации.
Например, больница может использовать его для обеспечения безопасности, актуальности данных пациента и полного сохранения их качества. Размещая базы данных о здоровьи в блокчейн, больница обеспечивает всем своим сотрудникам доступ к единому, неизменяемому источнику информации.
Также, как люди связывают криптовалюту с волатильностью, они часто связывают большие данные со способностью просеивать большие объемы информации. Big Data поможет отслеживать тенденции. На цену влияет множество факторов и алгоритмы больших данных учтут это, а затем предоставят решение.
Перспективы использования Биг Дата
Blockchain и Big Data — две развивающиеся и взаимодополняющие друг друга технологии. С 2016 блокчейн часто обсуждается в СМИ. Это криптографически безопасная технология распределенных баз данных для хранения и передачи информации. Защита частной и конфиденциальной информации — актуальная и будущая проблема больших данных, которую способен решить блокчейн.
Аналитика Big Data будет важна для отслеживания транзакций и позволит компаниям, использующим блокчейн, выявлять скрытые схемы и выяснять с кем они взаимодействуют в блокчейне.
Рынок Big data в России
Весь мир и в том числе Россия используют технологию Big Data в банковской сфере, услугах связи и розничной торговле. Эксперты считают, что в будущем технологию будут использовать транспортная отрасль, нефтегазовая и пищевая промышленность, а также энергетика.
Аналитики IDC признали Россию крупнейшим региональным рынком BDA. По расчетам в текущем году выручка приблизится к 1,4 миллиардам долларов и будет составлять 40% общего объема инвестиций в секторе больших данных и приложений бизнес-аналитики.
Где можно получить образование по Big Data (анализу больших данных)?
GeekUniversity совместно с Mail.ru Group открыли первый в России факультет Аналитики Big Data.
Для учебы достаточно школьных знаний. У вас будут все необходимые ресурсы и инструменты + целая программа по высшей математике. Не абстрактная, как в обычных вузах, а построенная на практике. Обучение познакомит вас с технологиями машинного обучения и нейронными сетями, научит решать настоящие бизнес-задачи.
После учебы вы сможете работать по специальностям:
Особенности изучения Big Data в GeekUniversity
Через полтора года практического обучения вы освоите современные технологии Data Science и приобретете компетенции, необходимые для работы в крупной IT-компании. Получите диплом о профессиональной переподготовке и сертификат.
Обучение проводится на основании государственной лицензии № 040485. По результатам успешного завершения обучения выдаем выпускникам диплом о профессиональной переподготовке и электронный сертификат на портале GeekBrains и Mail.ru Group.
Проектно-ориентированное обучение
Обучение происходит на практике, программы разрабатываются совместно со специалистами из компаний-лидеров рынка. Вы решите четыре проектные задачи по работе с данными и примените полученные навыки на практике. Полтора года обучения в GeekUniversity = полтора года реального опыта работы с большими данными для вашего резюме.
Наставник
В течение всего обучения у вас будет личный помощник-куратор. С ним вы сможете быстро разобраться со всеми проблемами, на которые в ином случае ушли бы недели. Работа с наставником удваивает скорость и качество обучения.
Основательная математическая подготовка
Профессионализм в Data Science — это на 50% умение строить математические модели и еще на 50% — работать с данными. GeekUniversity прокачает ваши знания в матанализе, которые обязательно проверят на собеседовании в любой серьезной компании.
GeekUniversity дает полтора года опыта работы для вашего резюме
В результате для вас откроется в 5 раз больше вакансий:
Для тех у кого нет опыта в программировании, предлагается начать с подготовительных курсов. Они позволят получить базовые знания для комфортного обучения по основной программе.
Поделитесь этим материалом в социальных сетях и оставьте свое мнение в комментариях ниже.
Что такое Big Data и почему их называют «новой нефтью»
Что такое Big Data?
Big Data или большие данные — это структурированные или неструктурированные массивы данных большого объема. Их обрабатывают при помощи специальных автоматизированных инструментов, чтобы использовать для статистики, анализа, прогнозов и принятия решений.
Сам термин «большие данные» предложил редактор журнала Nature Клиффорд Линч в спецвыпуске 2008 года [1]. Он говорил о взрывном росте объемов информации в мире. К большим данным Линч отнес любые массивы неоднородных данных более 150 Гб в сутки, однако единого критерия до сих пор не существует.
До 2011 года анализом больших данных занимались только в рамках научных и статистических исследований. Но к началу 2012-го объемы данных выросли до огромных масштабов, и возникла потребность в их систематизации и практическом применении.
С 2014 на Big Data обратили внимание ведущие мировые вузы, где обучают прикладным инженерным и ИТ-специальностям. Затем к сбору и анализу подключились ИТ-корпорации — такие, как Microsoft, IBM, Oracle, EMC, а затем и Google, Apple, Facebook и Amazon. Сегодня большие данные используют крупные компании во всех отраслях, а также — госорганы. Подробнее об этом — в материале «Кто и зачем собирает большие данные?»
Какие есть характеристики Big Data?
Компания Meta Group предложила основные характеристики больших данных [2]:
Сегодня к этим трем добавляют еще три признака [3]:
Как работает Big Data: как собирают и хранят большие данные?
Большие данные необходимы, чтобы проанализировать все значимые факторы и принять правильное решение. С помощью Big Data строят модели-симуляции, чтобы протестировать то или иное решение, идею, продукт.
Главные источники больших данных:
С 2007 года в распоряжении ФБР и ЦРУ появилась PRISM — один из самых продвинутых сервисов, который собирает персональные данные обо всех пользователях соцсетей, а также сервисов Microsoft, Google, Apple, Yahoo и даже записи телефонных разговоров.
Современные вычислительные системы обеспечивают мгновенный доступ к массивам больших данных. Для их хранения используют специальные дата-центры с самыми мощными серверами.
Помимо традиционных, физических серверов используют облачные хранилища, «озера данных» (data lake — хранилища большого объема неструктурированных данных из одного источника) и Hadoop — фреймворк, состоящий из набора утилит для разработки и выполнения программ распределенных вычислений. Для работы с Big Data применяют передовые методы интеграции и управления, а также подготовки данных для аналитики.
Big Data Analytics — как анализируют большие данные?
Благодаря высокопроизводительным технологиям — таким, как грид-вычисления или аналитика в оперативной памяти, компании могут использовать любые объемы больших данных для анализа. Иногда Big Data сначала структурируют, отбирая только те, что нужны для анализа. Все чаще большие данные применяют для задач в рамках расширенной аналитики, включая искусственный интеллект.
Выделяют четыре основных метода анализа Big Data [4]:
1. Описательная аналитика (descriptive analytics) — самая распространенная. Она отвечает на вопрос «Что произошло?», анализирует данные, поступающие в реальном времени, и исторические данные. Главная цель — выяснить причины и закономерности успехов или неудач в той или иной сфере, чтобы использовать эти данные для наиболее эффективных моделей. Для описательной аналитики используют базовые математические функции. Типичный пример — социологические исследования или данные веб-статистики, которые компания получает через Google Analytics.
«Есть два больших класса моделей для принятия решений по ценообразованию. Первый отталкивается от рыночных цен на тот или иной товар. Данные о ценниках в других магазинах собираются, анализируются и на их основе по определенным правилам устанавливаются собственные цены.
Второй класс моделей связан с выстраиванием кривой спроса, которая отражает объемы продаж в зависимости от цены. Это более аналитическая история. В онлайне такой механизм применяется очень широко, и мы переносим эту технологию из онлайна в офлайн».
2. Прогнозная или предикативная аналитика (predictive analytics) — помогает спрогнозировать наиболее вероятное развитие событий на основе имеющихся данных. Для этого используют готовые шаблоны на основе каких-либо объектов или явлений с аналогичным набором характеристик. С помощью предикативной (или предиктивной, прогнозной) аналитики можно, например, просчитать обвал или изменение цен на фондовом рынке. Или оценить возможности потенциального заемщика по выплате кредита.
3. Предписательная аналитика (prescriptive analytics) — следующий уровень по сравнению с прогнозной. С помощью Big Data и современных технологий можно выявить проблемные точки в бизнесе или любой другой деятельности и рассчитать, при каком сценарии их можно избежать их в будущем.
4. Диагностическая аналитика (diagnostic analytics) — использует данные, чтобы проанализировать причины произошедшего. Это помогает выявлять аномалии и случайные связи между событиями и действиями.
Например, Amazon анализирует данные о продажах и валовой прибыли для различных продуктов, чтобы выяснить, почему они принесли меньше дохода, чем ожидалось.
Данные обрабатывают и анализируют с помощью различных инструментов и технологий [6] [7]:
Как отметил в подкасте РБК Трендов менеджер по развитию IoT «Яндекс.Облака» Александр Сурков, разработчики придерживаются двух критериев сбора информации:
Чтобы обрабатывать большие массивы данных в режиме онлайн используют суперкомпьютеры: их мощность и вычислительные возможности многократно превосходят обычные. Подробнее — в материале «Как устроены суперкомпьютеры и что они умеют».
Big Data и Data Science — в чем разница?
Data Science или наука о данных — это сфера деятельности, которая подразумевает сбор, обработку и анализ данных, — структурированных и неструктурированных, не только больших. В ней используют методы математического и статистического анализа, а также программные решения. Data Science работает, в том числе, и с Big Data, но ее главная цель — найти в данных что-то ценное, чтобы использовать это для конкретных задач.
В каких отраслях уже используют Big Data?
Павел Иванченко, руководитель по IoT «МегаФона»:
«IoT-решение из области так называемого точного земледелия — это когда специальные метеостанции, которые стоят в полях, с помощью сенсоров собирают данные (температура, влажность) и с помощью передающих радио-GSM-модулей отправляют их на IoT-платформу. На ней посредством алгоритмов big data происходит обработка собранной с сенсоров информации и строится высокоточный почасовой прогноз погоды. Клиент видит его в интерфейсе на компьютере, планшете или смартфоне и может оперативно принимать решения».
Big Data в России и мире
По данным компании IBS [8], в 2012 году объем хранящихся в мире цифровых данных вырос на 50%: с 1,8 до 2,7 Збайт (2,7 трлн Гбайт). В 2015-м в мире каждые десять минут генерировалось столько же данных, сколько за весь 2003 год.
По данным компании NetApp, к 2003 году в мире накопилось 5 Эбайтов данных (1 Эбайт = 1 млрд Гбайт). В 2015-м — более 6,5 Збайта, причем тогда большие данные использовали лишь 17% компаний по всему миру [9]. Большую часть данных будут генерировать сами компании, а не их клиенты. При этом обычный пользователь будет коммуницировать с различными устройствами, которые генерируют данные, около 4 800 раз в день.
Сейчас в США с большими данными работает более 55% компаний [11], в Европе и Азии — около 53%. Только за последние пять лет распространение Big Data в бизнесе выросло в три раза.
В Китае действует более 200 законов и правил, касающихся защиты личной информации. С 2019 года все популярные приложения для смартфонов начали проверять и блокировать, если они собирают данные о пользователях вопреки законам. В итоге данные через местные сервисы собирает государство, и многие из них недоступны извне.
С 2018 года в Евросоюзе действует GDPR — Всеобщий регламент по защите данных. Он регулирует все, что касается сбора, хранения и использования данных онлайн-пользователей. Когда закон вступил в силу год назад, он считался самой жесткой в мире системой защиты конфиденциальности людей в Интернете.
В России рынок больших данных только зарождается. К примеру, сотовые операторы делятся с банками информацией о потенциальных заемщиках [12]. Среди корпораций, которые собирают и анализируют данные — «Яндекс», «Сбер», Mail.ru. Появились специальные инструменты, которые помогают бизнесу собирать и анализировать Big Data — такие, как российский сервис Ctrl2GO.
Big Data в бизнесе
Большие данные полезны для бизнеса в трех главных направлениях:
Крупные компании — такие, как Netflix, Procter & Gamble или Coca-Cola — с помощью больших данных прогнозируют потребительский спрос. 70% решений в бизнесе и госуправлении принимается на основе геоданных. Подробнее — в материале о том, как бизнес извлекает прибыль из Big Data.
Каковы проблемы и перспективы Big Data?
Главные проблемы:
Плюсы и перспективы:
В ближайшем будущем большие данные станут главным инструментом для принятия решений — начиная с сетевых бизнесов и заканчивая целыми государствами и международными организациями [15].
Что такое «Big Data»?
Термин «большие данные» или «big data» начал набирать популярность с 2011 года. Сегодня его хотя бы раз слышал каждый. Проблема в том, что часто понятие используют не по определению. Поэтому давайте подробно разберемся, что это такое.
С развитием технологий количество данных стало увеличиваться в геометрической прогрессии. Традиционные инструменты перестали покрывать потребность в обработке и хранении информации. Для обработки данных, объем которых превышает сотни терабайт и постоянно увеличивается, были созданы специальные алгоритмы. Их принято называть «big data».
Сегодня информация собирается огромными объемами из разных источников: интернет, контакт-центры, мобильные устройства и т.д. Чаще всего такие данные не имеют четкой структуры и упорядоченности, поэтому человек не может использовать их для какой-либо деятельности. Для автоматизации анализа применяют технологии «big data».
Когда появились первые большие данные?
Большие данные появились в 60-70 годах прошлого столетия вместе с первыми ЦОД (центры обработки данных). В 2005 году компании начали понимать масштабы создаваемого контента пользователями интернет-сервисов (Facebook, YouTube и др.). Тогда же начала работу первая платформа, предназначенная для взаимодействия с большими наборами данных, — Hadoop. Сегодня она представляет собой большой стек технологий для обработки информации. Чуть позже популярность начала набирать NoSQL — совокупность методов для создания систем управления большими данными.
Объем генерируемой информации стал увеличиваться с появлением крупных интернет-сервисов. Пользователи загружают фотографии, просматривают контент, ставят «лайки» и т.п. Вся эта информация собирается в больших объемах для дальнейшего анализа, после которого можно вносить улучшения в работу сервисов. Например, социальные сети используют большие данные для показа пользователям релевантной рекламы (то есть той, которая соответствует их потребностям и интересам) в таргете. Это позволяет соцсетям продавать бизнесу возможность проведения точных рекламных кампаний.
Основные свойства больших данных
В самом начале статьи мы определили три основных свойства больших данных из общепринятого определения. Давайте раскроем их более подробно:
Как с ними работают?
Большие данные несут в себе много полезной информации, на основе которой компании создают новые возможности и формируют бизнес-модели. Работа с большими данными делится на 3 этапа: интеграция, управление и анализ.
На этом этапе компания интегрирует в свою работу технологии и системы, позволяющие собирать большие объемы информации из разных источников. Внедряются механизмы обработки и форматирования данных для упрощения работы аналитиков с «big data».
Полученные данные нужно где-то хранить, этот вопрос решается до начала работы с ними. Решение принимается на основе множества критериев, главными из которых считаются предпочтения по формату и технологии обработки. Как правило, для хранения компании используют локальные хранилища, публичные или частные облачные сервисы.
Большие данные начинают приносить пользу после анализа. Это заключительный этап взаимодействия с ними. Для этого применяют машинное обучение, ассоциацию правил обучения, генетические алгоритмы и другие технологии. После анализа данных остается только самое ценное для бизнеса.
Примеры использования больших данных
В общих чертах с «big data» разобрались. Но остался важный вопрос — где их можно применять практически? Ответ: в любой сфере деятельности, которая оперирует необходимыми для анализа данными. Давайте рассмотрим несколько реальных примеров. Это позволит лучше понять, для чего нужны большие данные и как от них можно получить пользу.
В российской банковской сфере большие данные первым начал использовать «Сбербанк». На основе «big data» и биометрической системы в 2014 году они разработали систему идентификации личности клиента по фотографии. Принцип работы очень простой: сравнение текущего снимка с фотографией из базы, которую делают сотрудники при выдаче банковской карты. Новая система сократила случаи мошенничества в 10 раз.
Сегодня «Сбербанк» продолжает использовать большие данные в работе: сбор и анализ информации позволяет управлять рисками, бороться с мошенничеством, оценивать кредитоспособность клиентов, управлять очередями в отделениях и многое другое.
Еще один пример из российского банковского сектора — ВТБ24. Внедрять «big data» компания начала чуть позже «Сбербанка». Сегодня они используют большие данные для сегментации и управления оттоком клиентов, формирования финансовой отчетности, анализа отзывов в интернете и многого другого.
«Альфа-Банку» большие данные помогают контролировать репутацию бренда в интернете, оценивать кредитоспособность новых клиентов, персонализировать контент, управлять рисками и т.п.
Большие данные в бизнесе
Многие ошибочно полагают, что работа с большими данными актуальна только для банковского сектора и ИТ-компаний. Это опровергает пример «Магнитогорского металлургического комбината», который разработал сервис «Снайпер» для снижения расходов сырья в производстве. Технология собирает большие объемы информации, анализирует их и дает рекомендации по оптимизации расходов материалов.
«Сургутнефтегаз» использует специальную систему для отслеживания основных бизнес-процессов в режиме реального времени. Это помогает в автоматизации учета продукции, ценообразовании, обеспечении персонала нужными данными и т.п.
Big Data в маркетинге
Маркетологи используют большие данные для прогнозирования результатов рекламных кампаний. Также анализ помогает в определении наиболее заинтересованной аудитории. Яркий пример «big data» в маркетинге — Google Trends. В систему поступает огромное количество данных, а после анализа пользователь может оценить сезонность того или иного товара (работы, услуги).
Сложности при использовании
Где есть большие возможности, там поджидают и большие трудности. Это правило не обошло стороной big data.
Первая сложность, с которой сталкиваются компании, — большие данные занимают много места. Да, технологии хранения постоянно улучшаются, но при этом и объем данных неуклонно растет (в среднем в два раза каждые два года).
Приобретение огромного хранилища не решает всех проблем. От простого хранения данных толку не будет, с ними нужно работать для получения выгоды. Отсюда вытекает другая сложность — налаживание обработки получаемых больших данных.
Сейчас аналитики тратят 50-80% рабочего времени для приведения информации в приемлемый для клиента вид. Компаниям приходится нанимать больше специалистов, что увеличивает расходы.
И еще одна проблема — стремительное развитие больших данных. Регулярно появляются новые инструменты и сервисы для работы (например, Hbase). Бизнесу приходится тратить много времени и средств, чтобы «быть в тренде» и не отставать от развития.
Таким образом, big data — это совокупность технологий обработки больших объемов информации (сотни терабайтов и более) и сегодня мало кто отрицает их важность в будущем. Их популярность будет расти и распространение в бизнесе увеличиваться. Впоследствии разработают технологии по автоматизации анализа и с big data будут работать не только крупные компании, но и средние с маленькими.