За счет чего осуществляется адаптивная эволюция популяций

Популяционная генетика, теорема Фишера, адаптивные ландшафты, генетический дрейф и «эволюционная тяга»

За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций

За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций

За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций

Основы крайне важного синтеза дарвинизма и генетики были заложены в конце 1920-х – начале 1930-х годов тремя выдающимися генетиками-теоретиками – Рональдом Фишером, Сьюэлом Райтом и Дж. Б. С. Холдейном. Основываясь на точных математических и статистических расчетах, они создали идеализированную модель эволюции в биологической популяции. Вероятно, великий ученый-статистик Фишер первым обратил внимание, что генетика никоим образом не противоречит дарвинизму, а, напротив, предоставляет естественный и твердый фундамент для теории дарвиновской эволюции. Фишер обобщил свои выводы в исторической работе 1930 года «Генетическая теория естественного отбора» (Fisher, 1930), пожалуй, втором по значимости для эволюционной биологии труде после дарвиновского «Происхождения…»[8]. Это стало началом блистательного возрождения дарвинизма, позже получившего название современный синтез (термин, используемый преимущественно в США), или неодарвинизм (в британской и европейских традициях)[9].

Нет ни надобности, ни практической возможности излагать здесь основы популяционной генетики[10]. Можно, однако, лаконично представить некоторые обобщения, имеющие отношение к остальной части обсуждения современной эволюционной биологии. Пусть и поверхностное, но такое резюме здесь будет существенно. По сути, основатели популяционной генетики осознали простой факт, что эволюция не действует на изолированные организмы или абстрактные виды, а направлена на конкретные группы скрещивающихся особей, называемые популяциями. Размер и структура эволюционирующей популяции в большой степени определяют направление и результат эволюции. В частности, Фишер сформулировал и доказал фундаментальную теорему естественного отбора (известную как теорема Фишера), в которой утверждается, что интенсивность отбора (и, следовательно, скорость эволюции путем отбора) пропорциональна величине генетической дисперсии по приспособленности эволюционирующей популяции, которая, в свою очередь, пропорциональна эффективному размеру популяции.

В табл. 1–1 собраны основные определения и уравнения, описывающие эффекты мутаций и давления отбора на устранение или закрепление мутантных аллелей в зависимости от эффективного размера популяции. Качественная суть этих уравнений в том, что при одинаковой скорости мутаций в популяции большего эффективного размера отбор более интенсивный. В таких популяциях даже мутации с небольшим положительным коэффициентом отбора («слегка» благоприятные мутации) закрепляются быстро. С другой стороны, мутации даже с очень маленьким отрицательным коэффициентом селекции («слегка» вредные мутации) быстро устраняются. Данный эффект был строго сформулирован в теореме Фишера.

Таблица 1–1. Фундаментальное соотношение, описывающее роль отбора и генетический дрейф в эволюции популяции

За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций

Из теоремы Фишера следует, что при эволюции, направляемой только естественным отбором, средняя приспособленность популяции не может уменьшаться (если, конечно, популяция собирается выжить). Пожалуй, наилучшим образом это можно представить с помощью образа «адаптивного ландшафта», который впервые был предложен другим отцом-основателем популяционной генетики, Сьюэлом Райтом. Райт создал этот чрезвычайно удачный образ в ответ на просьбу своего научного руководителя представить результаты математического анализа отбора в приемлемой для биологов форме. Благодаря своей простоте и изяществу это представление адаптивной эволюции сохраняет свою ценность по сей день и стимулировало многочисленные исследования, в результате которых появились более сложные и менее интуитивно понятные адаптивные ландшафты, в том числе и многомерные (Gavrilets, 2004)[11]. В соответствии с теоремой Фишера популяция, эволюция которой идет только за счет отбора (строго говоря, популяция бесконечного размера – такие популяции, естественно, не существуют, но являются удобной абстракцией, часто используемой в популяционной генетике), никогда не будет двигаться вниз по адаптивному ландшафту (см. рис. 1–1). Легко представить, что адаптивный ландшафт, как и обычный ландшафт, может иметь самую различную форму. При определенных обстоятельствах ландшафт может быть очень гладким, с единственным пиком, соответствующим глобальному адаптивному максимуму (иногда такой ландшафт образно называют «гора Фудзияма» (см. рис. 1–1а ). Реальный ландшафт, однако, неровный и содержит многочисленные пики различной высоты, разделенные долинами (см. рис. 1–1б ). Формально, согласно теореме Фишера (и в целом, в соответствии с теорией Дарвина), популяция, эволюционирующая с помощью отбора, может только подниматься вверх и, таким образом, достигнуть только локального пика, даже если его высота значительно меньше, чем высота глобального пика (см. рис. 1–1а ). Теория Дарвина и СТЭ утверждают, что движение популяции через долины запрещено, так как неизбежно подразумевает фазу спуска. Однако развитие популяционной генетики и ее применение к эволюционным процессам изменило эту упорядоченную картину, привнеся в нее понятие «дрейфа генов», ключевую идею эволюционной биологии, которую также предложил Райт.

За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций

Рис. 1–1. Адаптивные ландшафты: а – «гора Фудзияма» с единственным (глобальным) пиком; б – «пересеченная местность» неровного адаптивного ландшафта

За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций

Как подчеркивалось ранее, Дарвин признавал важную роль случайности в эволюции, но эта роль была ограничена только одной частью эволюционного процесса: появлением изменений (в современной терминологии – мутаций). В остальном эволюция рассматривалась как строго детерминистский процесс, где отбором закрепляются выгодные мутации, а все прочие мутации устраняются без какого-либо вреда для дальнейшего существования популяции. Однако при рассмотрении популяции в динамике картина значительно меняется. Основатели количественной популяционной генетики отразили в простых формулах зависимость интенсивности отбора от размера популяции и частоты мутаций (см. табл. 1–1 и рис. 1–2). Отбор эффективен в большой популяции, и мутация, несущая незначительное преимущество, почти наверняка закрепится (в популяции бесконечного размера закрепляется мутация с бесконечно малым положительным коэффициентом отбора). Райт понял, что в малой популяции, особенно при низкой частоте мутаций, эволюционный процесс идет по-другому. В такой популяции решающую роль играет дрейф генов, с помощью которого случайным образом часто закрепляются нейтральные и даже вредные (но, конечно, не летальные) мутации. Очевидно, с помощью генетического дрейфа эволюционирующая популяция может избежать однонаправленного подъема по адаптивному ландшафту и может спускаться (см. рис. 1–2)[12]. Преимущественно это выражается в движении вниз и последующем вымирании, однако если долина, отделяющая один локальный пик от другого, возможно даже более высокого, достаточно узкая, становится возможным переход через нее и последующее восхождение на более высокую вершину (см. рис. 1–2). Введение понятия генетического дрейфа в изучение эволюции является центральным в моем рассказе. Это новый уровень проявления случая. Хотя Дарвин и его ближайшие последователи видели роль случая в появлении наследуемых изменений (мутаций), дрейф вводит случайность на следующей стадии, то есть при закреплении этих изменений, забирая у отбора часть ответственности. В этой книге я исследую, насколько значимой может быть роль дрейфа в различных ситуациях в ходе эволюции.

За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций

Рис. 1–2. Эволюционные траектории на неровном адаптивном ландшафте. Пунктирной линией обозначается эволюционная траектория при высоком значении эффективного размера популяции. Сплошной линией обозначается эволюционная траектория при низком значении эффективного размера популяции.

Джон Мейнард Смит и, позднее, Джон Гиллеспи разработали теорию и компьютерные модели для демонстрации существования особого режима нейтральной эволюции, который слабо зависит от эффективного размера популяции и актуален даже в популяции бесконечного размера с сильным отбором. Этот способ нейтрального закрепления мутаций стал известен как «генетическая тяга» и относится к ситуациям, в которых одна или несколько нейтральных или даже умеренно вредных мутаций распространяются в популяции и в конечном итоге закрепляются, будучи связанными с полезной мутацией. Иными словами, нейтральные или вредные аллели «двигаются в одной повозке» вместе с полезным аллелем (Barton, 2000). Похоже, что некоторые данные и модели популяционной генетики свидетельствуют, что «движение в одной повозке» даже важнее для эволюции популяции с половым размножением, чем дрейф. Очевидно, что эффект «езды в одной повозке» обусловлен совокупным воздействием естественного отбора и нейтральной изменчивостью в различных участках генома и, в отличие от дрейфа, может происходить даже в популяции бесконечно большого эффективного размера (Gillespie, 2000).

За счет эффекта «движения в одной повозке» даже в больших популяциях могут закрепляться умеренно вредные мутации, что, соответственно, дает этой популяции возможность пересекать долины адаптивного ландшафта.

Источник

Адаптивная эволюция в геноме человека

За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций

СОДЕРЖАНИЕ

Методы [ править ]

Обратите внимание, что оба этих теста представлены здесь в основных формах, и эти тесты обычно значительно модифицируются для учета других факторов, таких как эффект слегка вредных мутаций.

В других методах обнаружения адаптивной эволюции используются общегеномные подходы, часто для поиска свидетельств выборочного сканирования. Свидетельство полного избирательного сканирования проявляется в уменьшении генетического разнообразия и может быть выведено из сравнения паттернов частотного спектра сайта (SFS, то есть частотного распределения аллелей), полученных с SFS, ожидаемым в рамках нейтральной модели (Willamson et al. 2007). Частичный выборочный поиск свидетельствует о самой последней адаптивной эволюции, и методы идентифицируют адаптивную эволюцию путем поиска регионов с высокой долей производных аллелей (Sabeti et al. 2006).

Другой недавний метод, используемый для обнаружения отбора в некодирующих последовательностях, исследует вставки и делеции (инделки), а не точечные мутации (Lunter et al. 2006), хотя этот метод применялся только для изучения паттернов отрицательного отбора.

Объем адаптивной эволюции [ править ]

Кодирующая ДНК [ править ]

Это поднимает важную проблему, заключающуюся в том, что многие из этих тестов адаптивной эволюции очень слабы. Таким образом, тот факт, что многие оценки находятся на уровне (или очень близком к нему) 0%, не исключает возникновения какой-либо адаптивной эволюции в геноме человека, а просто показывает, что положительный отбор не является достаточно частым, чтобы его можно было обнаружить с помощью тестов. Фактически, последнее упомянутое исследование утверждает, что смешивающие переменные, такие как демографические изменения, означают, что истинное значение α может достигать 40% (Eyre-Walker and Keightley 2009). Другое недавнее исследование, в котором используется относительно надежная методология, оценивает α на уровне 10-20%. Boyko et al. (2008). Ясно, что споры о степени адаптивной эволюции, происходящей в кодирующей ДНК человека, еще не решены.

Даже если низкие оценки α точны, небольшая часть адаптивно эволюционирующих замен все же может соответствовать значительному количеству кодирующей ДНК. Многие авторы, чьи исследования дают небольшие оценки степени адаптивной эволюции кодирующей ДНК, тем не менее признают, что в этой ДНК произошла некоторая адаптивная эволюция, поскольку эти исследования идентифицируют определенные области в геноме человека, которые эволюционировали адаптивно (например, Bakewell et al. др. (2007)). В ходе эволюции шимпанзе положительному отбору подверглось больше генов, чем у человека.

В целом низкие оценки адаптивной эволюции кодирующей ДНК человека можно сравнить с другими видами. Bakewell et al. (2007) нашли больше доказательств адаптивной эволюции у шимпанзе, чем у людей: 1,7% генов шимпанзе демонстрируют доказательства адаптивной эволюции (по сравнению с оценкой 1,1% для людей; см. Таблицу 1). Сравнивая людей с более отдаленно родственными животными, ранняя оценка α у видов Drosophila составляла 45% (Smith and Eyre-Walker 2002), а более поздние оценки в значительной степени согласуются с этим (Eyre-Walker 2006). Бактерии и вирусы обычно демонстрируют еще больше доказательств адаптивной эволюции; исследования показывают, что значения α находятся в диапазоне 50-85%, в зависимости от исследуемых видов (Eyre-Walker 2006). Как правило, существует положительная корреляция между (эффективным) размером популяции.вида и степень адаптивной эволюции, происходящей в кодирующих областях ДНК. Это может быть связано с тем, что случайный генетический дрейф становится менее сильным при изменении частот аллелей по сравнению с естественным отбором по мере увеличения размера популяции.

Некодирующая ДНК [ править ]

Оценка степени адаптивной эволюции некодирующей ДНКобычно очень низкие, хотя исследований некодирующей ДНК было проведено меньше. Однако, как и в случае с кодирующей ДНК, используемые в настоящее время методы относительно слабы. Понтинг и Лантер (2006) предполагают, что недооценка может быть еще более серьезной для некодирующей ДНК, потому что некодирующая ДНК может претерпевать периоды функциональности (и адаптивной эволюции), за которыми следуют периоды нейтральности. Если это так, то современные методы обнаружения адаптивной эволюции неадекватны для учета таких закономерностей. Кроме того, даже если низкие оценки степени адаптивной эволюции верны, это все равно может приравниваться к большому количеству адаптивно развивающейся некодирующей ДНК, поскольку некодирующая ДНК составляет примерно 98% ДНК в геноме человека. Например, Ponting and Lunter (2006) обнаруживают скромные 0,03% некодирующей ДНК, что свидетельствует об адаптивной эволюции,но это по-прежнему составляет примерно 1 МБ адаптивно развивающейся ДНК. Там, где есть доказательства адаптивной эволюции (что подразумевает функциональность) некодирующей ДНК, обычно считается, что эти области участвуют в регуляции последовательностей, кодирующих белок.

Как и в случае с людьми, меньше исследований посвящено поиску адаптивной эволюции в некодирующих областях других организмов. Однако там, где проводились исследования на дрозофиле, оказалось, что существует большое количество адаптивно эволюционирующей некодирующей ДНК. Андольфатто (2005) подсчитал, что адаптивная эволюция произошла в 60% нетранслируемых зрелых частей мРНК и в 20% интронных и межгенных областей. Если это правда, это будет означать, что большая часть некодирующей ДНК может иметь большее функциональное значение, чем кодирующая ДНК, что резко меняет консенсусное мнение. Однако это все равно оставит без ответа, какую функцию выполняет вся эта некодирующая ДНК, поскольку наблюдаемая до сих пор регуляторная активность составляет лишь крошечную долю от общего количества некодирующей ДНК. В конечном итоге необходимо собрать значительно больше доказательств, чтобы подтвердить эту точку зрения.

Различия между человеческими популяциями [ править ]

В нескольких недавних исследованиях сравнивалась степень адаптивной эволюции, происходящая между различными популяциями внутри человеческого вида. Williamson et al. (2007) нашли больше доказательств адаптивной эволюции в популяциях Европы и Азии, чем в популяциях афроамериканцев. Если предположить, что афроамериканцы являются представителями африканцев, эти результаты имеют интуитивный смысл, поскольку люди распространились из Африки примерно 50 000 лет назад (согласно консенсусной гипотезе происхождения человека за пределами Африки (Klein 2009)), и эти люди адаптировались к новой среде, с которой они столкнулись. Напротив, африканские популяции оставались в аналогичной среде в течение следующих десятков тысяч лет и, следовательно, были, вероятно, ближе к своему пику адаптации к окружающей среде. Однако Войт и др.(2006) нашли доказательства более адаптивной эволюции у африканцев, чем у неафриканцев (изучены восточноазиатские и европейские популяции), а Boyko et al. (2008) не обнаружили значительной разницы в степени адаптивной эволюции, происходящей между разными человеческими популяциями. Следовательно, полученные до сих пор доказательства неубедительны в отношении того, в какой степени разные человеческие популяции претерпели разную степень адаптивной эволюции.

Скорость адаптивной эволюции [ править ]

Скорость адаптивной эволюции в геноме человека часто считалась постоянной во времени. Например, оценка 35% для α, рассчитанная Fay et al. (2001) привели их к выводу, что в человеческой линии происходила одна адаптивная замена каждые 200 лет с момента расхождения человека с обезьянами старого мира.. Однако даже если исходное значение α является точным для определенного периода времени, эта экстраполяция все равно недействительна. Это связано с тем, что за последние 40 000 лет произошло большое увеличение количества позитивных селекций в человеческом родословном с точки зрения количества генов, претерпевших адаптивную эволюцию (Hawks et al. 2007). Это согласуется с простыми теоретическими предсказаниями, потому что размер человеческой популяции резко увеличился за последние 40 000 лет, и с увеличением количества людей должно быть больше адаптивных замен. Hawks et al. (2007) утверждают, что демографические изменения (особенно рост популяции) могут значительно облегчить адаптивную эволюцию, аргумент, который отчасти подтверждает положительную корреляцию, предполагаемую между размером популяции и количеством происходящей адаптивной эволюции, упомянутой ранее.

Было высказано предположение, что культурная эволюция могла заменить генетическую эволюцию и, следовательно, замедлить темпы адаптивной эволюции за последние 10 000 лет. Однако не исключено, что культурная эволюция действительно может увеличить генетическую адаптацию. Культурная эволюция значительно расширила общение и контакты между различными популяциями, и это предоставляет гораздо большие возможности для генетического смешения между различными популяциями (Hawks et al. 2007). Однако недавние культурные явления, такие как современная медицина и меньшие вариации в размерах современных семей, могут снизить генетическую адаптацию, поскольку естественный отбор ослаблен, перекрывая повышенный потенциал адаптации из-за большей генетической примеси.

Сила положительного отбора [ править ]

Области генома, которые демонстрируют доказательства адаптивной эволюции [ править ]

В значительном количестве исследований использовались геномные методы для идентификации конкретных генов человека, свидетельствующих об адаптивной эволюции. В таблице 2 приведены избранные примеры таких генов для каждого обсуждаемого типа генов, но далеко не исчерпывающий список генов человека, свидетельствующих об адаптивной эволюции. Ниже перечислены некоторые типы генов, которые демонстрируют убедительные доказательства адаптивной эволюции в геноме человека.

417 генов, участвующих в иммунной системе, продемонстрировали убедительные доказательства адаптивной эволюции в исследовании Nielsen et al. (2005a). Вероятно, это связано с тем, что иммунные гены могут участвовать в эволюционной гонке вооружений с бактериями и вирусами (Daugherty and Malik 2012; Van der Lee et al. 2017). Эти патогены эволюционируют очень быстро, поэтому давление отбора быстро меняется, давая больше возможностей для адаптивной эволюции.

Гены, участвующие в обнаружении запахов, демонстрируют убедительные доказательства адаптивной эволюции (Войт и др., 2006), вероятно, из-за того, что запахи, с которыми сталкиваются люди, недавно изменились в их эволюционной истории (Уильямсон и др. 2007). Обоняние людей играет важную роль в определении безопасности источников пищи.

Гены, участвующие в метаболизме лактозы, демонстрируют особенно убедительные доказательства адаптивной эволюции среди генов, участвующих в питании. Мутация, связанная с устойчивостью лактазы, показывает очень убедительные доказательства адаптивной эволюции в европейских и американских популяциях (Williamson et al. 2007), популяциях, где пастбищное животноводство для получения молока было исторически важным.

Гены пигментации демонстрируют особенно убедительные доказательства адаптивной эволюции в неафриканских популяциях (Williamson et al. 2007). Вероятно, это связано с тем, что те люди, которые покинули Африку примерно 50 000 лет назад, попали в менее солнечный климат и поэтому оказались под новым давлением отбора, чтобы получить достаточное количество витамина D из ослабленного солнечного света.

Есть некоторые свидетельства адаптивной эволюции генов, связанных с развитием мозга, но некоторые из этих генов часто связаны с заболеваниями, например, микроцефалией (см. Таблицу 2). Тем не менее, существует особый интерес к поискам адаптивной эволюции генов мозга, несмотря на этические проблемы, связанные с такими исследованиями. Если бы в генах мозга одной человеческой популяции была обнаружена более адаптивная эволюция, чем в другой, то эту информацию можно было бы интерпретировать как проявление большего интеллекта в более адаптивно развитой популяции.

Трудности определения положительного отбора [ править ]

Как отмечалось ранее, многие тесты, используемые для обнаружения адаптивной эволюции, имеют очень большую степень неопределенности в своих оценках. Несмотря на то, что существует множество различных модификаций, применяемых к отдельным тестам для преодоления связанных с ними проблем, два типа смешанных переменных особенно важны для того, чтобы препятствовать точному обнаружению адаптивной эволюции: демографические изменения и предвзятое преобразование генов.

Демографические изменения представляют особую проблему и могут серьезно исказить оценки адаптивной эволюции. Человеческое происхождение претерпело как быстрое сокращение численности, так и расширение популяции на протяжении своей эволюционной истории, и эти события изменят многие признаки, которые, как считается, являются характерными для адаптивной эволюции (Nielsen et al. 2007). Моделирование показало, что некоторые геномные методы относительно устойчивы к демографическим изменениям (например, Willamson et al. 2007). Однако никакие тесты не являются полностью устойчивыми к демографическим изменениям, и недавно были обнаружены новые генетические явления, связанные с демографическими изменениями. Это включает в себя концепцию «серфинговых мутаций», когда новые мутации могут распространяться с увеличением популяции (Klopfstein et al. 2006).

Таблица 1: Оценки степени адаптивной эволюции в геноме человека [ править ]

(формат таблицы и некоторые данные отображаются, как в таблице 1 Eyre-Walker (2006))

Источник

Неадаптивная пластичность ускоряет адаптивную эволюцию

За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций

Рис. 1. Тринидадские гуппи — удобный объект для изучения быстрых эволюционных изменений. Фото из синопсиса к обсуждаемой статье в Nature

Признаки организмов определяются не только генами, но и условиями, в которых происходит развитие. Ненаследственную изменчивость, порождаемую изменениями среды, называют «фенотипической пластичностью». Она может быть как адаптивной (повышающей приспособленность к новым условиям), так и неадаптивной. Предполагается, что фенотипическая пластичность сильно влияет на ход эволюции, однако экспериментальных данных об этом мало. Эксперимент на тринидадских гуппи, проведенный американскими биологами, показал, что у этих рыбок неадаптивная фенотипическая пластичность является мощным фактором, ускоряющим адаптацию к новой среде. Признаки, в новых условиях меняющиеся в «неправильную» сторону, подвергаются более сильному отбору и поэтому быстрее эволюционируют в противоположном («правильном») направлении, попутно снижая размах ненаследственной вариабельности.

Когда живые организмы попадают в новые, непривычные для них условия, многие их признаки могут измениться, причем быстро и без всякой эволюции. Например, недостаток пищи может вызвать замедление роста, а избыток — привести к ожирению. Фенотипической пластичности в той или иной мере подвержены практически все признаки. Можно даже сказать, что чисто врожденных признаков не бывает: фенотип в целом и все его компоненты развиваются в результате сложного взаимодействия генетических и средовых факторов. Это утверждение может показаться спорным, но подумайте, много ли существует признаков, для которых в принципе невозможно подобрать такие условия, в которых признак не разовьется или разовьется как-то иначе?

Фенотипическую пластичность называют адаптивной или неадаптивной в зависимости от того, полезным или вредным является данное изменение в новых условиях (конечно, бывают и нейтральные пластические изменения, но они пока не привлекают внимания теоретиков). Например, если в условиях дефицита пищи мелкие особи размножаются эффективнее, чем крупные, то замедление роста в ответ на голодание будет примером адаптивной пластичности (или адаптивной модификации). Если же особи, сумевшие вырасти большими, невзирая на скудное питание, все-таки размножаются лучше мелких, то же самое ненаследственное изменение придется классифицировать как неадаптивную пластичность.

В простейших эволюционных моделях фенотипическая пластичность нередко игнорируется, а всё внимание концентрируется на наследственной изменчивости. «По умолчанию» такие модели предполагают, что существенные различия между особями определяются генотипом, а всеми прочими можно пренебречь. При этом биологи хорошо понимают, что фенотипическая пластичность не только эволюционирует, но и сама влияет на ход эволюции, причем влияние это может быть весьма сильным, сложным и разнообразным (см.: Ненаследственная изменчивость тоже влияет на эволюцию — популярный синопсис статьи Н. Н. Иорданского Фенотипическая пластичность организмов и эволюция).

Адаптивная пластичность может замедлять адаптивную эволюцию. Ведь если признак в новых условиях и так меняется в «правильную» сторону, приближая фенотип к оптимуму, то направленный (движущий) отбор будет слабее действовать на данный признак, и его эволюция замедлится. С другой стороны, адаптивная пластичность может способствовать эволюционным изменениям — например, за счет таких механизмов как генетическая ассимиляция и эффект Болдуина, о котором рассказано в новости Гены управляют поведением, а поведение — генами, «Элементы», 12.11.2008.

Эволюционная роль неадаптивной пластичности тоже неоднозначна. По-видимому, она, подобно адаптивной пластичности, может как ускорять, так и замедлять эволюцию в зависимости от обстоятельств. Начнем с замедления. На ранних этапах адаптации к неблагоприятным условиям неадаптивная пластичность будет снижать приспособленность организмов, которым и без того в этих условиях несладко, маскируя формирующиеся наследственные адаптации и сводя на нет «усилия» естественного отбора. В результате может сложиться ситуация, когда мигранты из более благоприятных местообитаний, не имеющие этих адаптаций, но зато сытые и довольные жизнью, будут постоянно вытеснять из данной неблагоприятной ниши местных аборигенов — только для того, чтобы вскоре самим ослабеть и быть вытесненными новой волной мигрантов. В такой обстановке очень трудно по-настоящему приспособиться к новой нише. Подобный эффект пока существует только в теории, однако замечу к слову, что нам (сотрудникам Кафедры биологической эволюции биологического факультета МГУ) удалось его воспроизвести в эволюционном эксперименте на дрозофилах (статья готовится к печати).

Способность неадаптивной фенотипической пластичности ускорять (а не замедлять) адаптивную эволюцию тоже пока разработана в основном теоретически. Идея проста: неадаптивная пластичность смещает признак в сторону, противоположную оптимуму, а значит, признак будет подвергаться более сильному действию движущего отбора. В результате может произойти так называемая «генетическая компенсация» (когда полезные наследственные изменения компенсируют вредные ненаследственные). Типичный пример — эволюция темпов развития у холоднокровных животных (таких как лягушки) в ходе освоения ими разных климатических зон. Как правило, понижение температуры ведет к замедлению развития холоднокровных. Однако в условиях короткого северного лета медленное развитие, скорее всего, будет вредным признаком. Наоборот, здесь надо расти как можно быстрее. Таким образом, в данном случае фенотипическая пластичность является неадаптивной.

Как следствие, популяция, попавшая в район с холодным климатом, будет подвергаться очень сильному отбору на ускорение развития — более сильному, чем в случае отсутствия фенотипической пластичности. Такой отбор, направленный в сторону, противоположную фенотипическому эффекту среды, иногда называют «отбором против градиента среды» (countergradient selection). В итоге спустя какое-то количество поколений может получиться такая картина: две популяции, адаптированные к жизни в холодном и теплом климате, демонстрируют сходный темп развития в своих естественных местообитаниях. Но если поместить представителей этих популяций в одинаковые температурные условия, то адаптированные к холоду особи будут развиваться быстрее, чем адаптированные к теплу. Это объясняется тем, что генетические изменения, закрепившиеся под действием отбора в холодных условиях и ускоряющие развитие, и вредоносный эффект неадаптивной фенотипической пластичности полностью компенсируют и сводят на нет друг друга. В результате две генетически различающиеся популяции на первый взгляд выглядят так, как будто между ними нет различий (это называют «криптической эволюцией»).

Впрочем, все эти идеи основываются по большей части на косвенных данных. Экспериментальное изучение влияния фенотипической пластичности на ход эволюции — сложная задача, и биологи пока еще только начинают искать подходы к ее решению.

Важный шаг в этом направлении сделали американские биологи, изучающие в природных и лабораторных условиях эволюцию тринидадских гуппи (Poecilia reticulata). Эти рыбки стали классическим объектом эволюционных исследований (см.: The Guppy Project) благодаря знаменитым работам Джона Эндлера (John Endler), которые теперь продолжают Дэвид Резник (David Reznick) из Калифорнийского университета в Риверсайде и его коллеги — авторы обсуждаемой статьи. Об исследованиях Эндлера и Резника рассказано во многих популярных книгах, в том числе в книге Ричарда Докинза «Самое грандиозное шоу на Земле».

Эндлер, Резник и их коллеги ранее показали, что важнейшим фактором, направляющим эволюцию гуппи, является наличие или отсутствие хищников (хищных цихлид Crenicichla frenata из рода Crenicichla) в ручьях, где они обитают. При наличии хищников отбор способствует ускоренному росту, быстрому созреванию и блеклой маскировочной окраске. Шансов на долгую жизнь мало, поэтому выгодно как можно быстрее достичь зрелости, чтобы успеть оставить потомство. Если же хищников нет, главным фактором отбора становится внутривидовая конкуренция (в том числе соревнование самцов за внимание самок), и тогда преимущество получают медленно растущие особи, а самцы начинают щеголять яркими нарядами.

Впрочем, перечисленные наглядные фенотипические изменения — лишь верхушка айсберга. Под ними скрывается сложный комплекс физиологических изменений, развивающихся в череде поколений под действием отбора и основанных на изменении экспрессии (активности) множества генов.

Свое новое исследование авторы посвятили изучению роли фенотипической пластичности в приспособительной эволюции гуппи при переходе из водоемов с хищниками в водоемы, где хищники отсутствуют. В работе использовались четыре популяции гуппи:
№1: природная популяция из реки, где много хищников;
№2: природная популяция из ручья без хищников, которая, судя по результатам генетического анализа, некогда произошла от популяции №1;
№3 и 4: две искусственные популяции, произошедшие от рыбок из популяции №1, которых авторы сами пересадили в два свободных ручья без хищников.

Популяциям 3 и 4 позволили приспосабливаться к новым условиям в течение года, что соответствует трем-четырем поколениям гуппи. Затем авторы измерили уровень экспрессии генов у представителей всех популяций (это делается путем массового выделения, секвенирования и подсчета транскриптов — молекул РНК, считанных с того или иного гена, см. RNA-Seq). РНК выделяли из мозга взрослых самцов. Рыбок перед анализом в течение двух поколений выращивали в стандартных лабораторных условиях, чтобы убрать все ненаследственные (определяющиеся средой) различия. Тем самым авторы временно избавились от эффектов фенотипической пластичности, чтобы оценить наследственные (эволюционные) изменения, произошедшие в популяциях 2, 3 и 4 в ходе адаптации к жизни без хищников.

В результате удалось выявить 135 генов, экспрессия которых значимо изменилась в популяциях 2, 3 и 4 по сравнению с контрольной популяцией 1, причем у всех трех — в одну и ту же сторону (либо увеличилась, либо уменьшилась). Про эти гены можно уверенно сказать, что их экспрессия изменилась под действием отбора, и что эти изменения, следовательно, повысили приспособленность рыбок к жизни без хищников. Эволюционные изменения уровня экспрессии генов происходят за счет закрепления отбором изменений в каких-нибудь регуляторных участках ДНК или в генах белков, регулирующих транскрипцию. Конкретные генетические механизмы изменений в данном случае не важны. Достаточно помнить, что уровень экспрессии гена — такой же фенотипический признак, как и любой другой, и зависит он отчасти от генов, отчасти от среды. Изменения экспрессии 135 генов, о которых идет речь, возникли в ходе эволюции и являются наследственными (генетически обусловленными), а не средовыми.

Между прочим, сам факт, что в популяциях 3 и 4 всего за один год согласованно изменилась экспрессия целых 135 генов, причем в ту же сторону, что и в популяции 2 (которая гораздо дольше приспосабливалась к жизни без хищников), говорит об очень быстрой адаптивной эволюции, причем параллельной (а значит, предсказуемой). Для сравнения, значимые разнонаправленные изменения экспрессии в популяциях 3 и 4 были выявлены только у одного гена.

Теперь, зная, в какую сторону направлены эволюционные изменения при выходе гуппи из-под пресса хищников, авторы должны были оценить фенотипическую пластичность. Нужно было понять, как меняется экспрессия этих 135 генов в течение жизни рыбки (при неизменном геноме) в зависимости от того, есть поблизости хищники или нет.

Чтобы это выяснить, рыбок из предковой популяции (№1) держали в аквариумах с проточной водой, в которой либо присутствовал запах хищной цихлиды Crenicichla frenata, либо нет. Для этого в резервуар, из которого вода поступала в аквариум с гуппи, либо помещали эту хищную рыбу, либо оставляли его пустым. Хищника кормили такими же гуппи, скармливая ему по две рыбки в день, так что подопытные особи могли обонять не только запах хищника, но и химические «сигналы тревоги» от его жертв. В результате подопытные рыбы из популяции №1 либо оказывались в привычной для себя обстановке, чувствуя близость хищника, либо в новой, где запах хищника отсутствовал. Авторы сравнили экспрессию 135 генов в этих двух ситуациях, получив таким образом представление о ее фенотипической пластичности, то есть о ненаследственных изменениях экспрессии, появляющихся, когда рыба вдруг оказывается в водоеме без хищников.

Тут-то и выяснилось самое интересное. У подавляющего большинства анализируемых генов (120 из 135, или 89%) прижизненное ненаследственное изменение экспрессии оказалось направлено в сторону, противоположную эволюционно выгодной. То есть, например, если в ходе адаптации к жизни без хищников экспрессия данного гена под действием отбора увеличивается, то при помещении привыкшей к хищникам рыбки в среду без хищников она, напротив, уменьшается, и наоборот. Что касается тех 15 генов, у которых экспрессия изменилась в ту же сторону, что и в ходе эволюции, то они не выбиваются из общей закономерности, поскольку их фенотипическая пластичность оказалась очень слабой, почти нулевой. В итоге выявилась строгая отрицательная корреляция между изменением экспрессии генов под действием отбора и при непосредственном воздействии того же фактора среды, которым определяется направленность отбора (рис. 2). Проще говоря, почти вся выявленная фенотипическая пластичность оказалась неадаптивной!

За счет чего осуществляется адаптивная эволюция популяций. Смотреть фото За счет чего осуществляется адаптивная эволюция популяций. Смотреть картинку За счет чего осуществляется адаптивная эволюция популяций. Картинка про За счет чего осуществляется адаптивная эволюция популяций. Фото За счет чего осуществляется адаптивная эволюция популяций

Рис. 2. Эволюционные изменения уровня экспрессии 135 генов в ходе адаптации к жизни без хищников (вертикальная ось) отрицательно коррелируют с исходной фенотипической пластичностью в предковой популяции (горизонтальная ось). Каждый кружок соответствует одному гену. Черными кружками обозначены 15 генов, у которых эволюционные и пластические изменения экспрессии оказались однонаправленными (а не разнонаправленными, как у всех остальных). Можно заметить, что для этих 15 генов характерна минимальная (близкая к нулю) пластичность экспрессии. Рисунок из обсуждаемой статьи в Nature

Всё, что выгодно увеличить при исчезновении хищников и что действительно увеличивается за несколько поколений жизни в безопасном ручье под действием отбора, при жизни рыбки, столкнувшейся с новой для себя ситуацией отсутствия хищников, почему-то уменьшается, и наоборот.

В полученных результатах нет никакой мистики. Они, разумеется, не означают, что фенотипической пластичности внутренне присуща какая-то особая вредоносность. Они означают совсем другое: по-видимому, неадаптивная пластичность является мощным фактором, ускоряющим эволюционные изменения признаков.

Направленность пластических изменений в основном случайна. Ведь рыбки в природе очень редко сталкиваются с внезапным исчезновением всех хищников в водоеме и очень редко переселяются в новый водоем, где количество хищников резко отличается от привычного. Поэтому у отбора не было возможности обеспечить гуппи надежным механизмом адаптивных модификационных изменений. Новый стимул — отсутствие запаха хищника — автоматически приводит к пластическим изменениям, направленность которых не находилась до сих пор под действием отбора и потому случайна (точнее, она определяется какими-то факторами, но не зависит от собственного влияния на приспособленность). Однако от этой направленности во многом зависит дальнейший ход эволюции. Если пластическое изменение оказалось неадаптивным, отбор будет сильнее действовать на признак, смещая его в сторону оптимума. Соответственно, признак будет быстрее эволюционировать. Если же ненаследственное изменение случайно приблизило признак к оптимуму, то действие отбора на признак будет слабее, и его эволюция будет идти медленнее. Именно поэтому для большинства признаков, продемонстрировавших быстрый эволюционный ответ на изменение обстановки, оказалась характерна неадаптивная пластичность. Неадаптивный характер пластичности здесь — причина, а быстрая эволюция — следствие.

Если эти построения верны, следует ожидать, что в ходе адаптации к отсутствию хищников фенотипическая пластичность рассмотренных признаков (уровня экспрессии 135 генов) должна была уменьшиться. Ведь степень пластичности признака сама является наследственным признаком, способным эволюционировать под действием отбора. В зависимости от обстоятельств отбор может способствовать как увеличению пластичности (расширению нормы реакции), так и ее уменьшению (стабилизации признака). У рассматриваемых 135 генов пластичность экспрессии неадаптивна, то есть снижает приспособленность в среде без хищников. Значит, отбор должен работать против нее — он должен стремиться сузить норму реакции. Это предсказание было проверено авторами и подтвердилось: пластичность уровня экспрессии изученных генов в популяциях 3 и 4 уменьшилась в среднем на 11%. Этот результат показывает, что авторские интерпретации скорее всего верны, и неадаптивная пластичность действительно является мощным фактором, направляющим и ускоряющим эволюцию признаков. Адаптивная пластичность, напротив, должна ослаблять действие движущего отбора на признак и замедлять его адаптивную эволюцию.

Помимо общетеоретического значения, данная работа может иметь и практическое, связанное с построением предсказательных эволюционных моделей. Исследование показало, что направленность эволюционных изменений (обусловленных, к примеру, глобальным потеплением) можно предсказывать, зная характер фенотипической пластичности. Впрочем, выводы пока основаны только на одном объекте — тринидадских гуппи, так что для глобальных обобщений время еще не пришло.

Источник: Cameron K. Ghalambor, Kim L. Hoke, Emily W. Ruell, Eva K. Fischer, David N. Reznick & Kimberly A. Hughes. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature // Nature. Published online 02 September 2015. Doi:10.1038/nature15256.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *