Vin1 voltage что это
Описание названий напряжений на материнских платах.
Описание названий напряжений на материнских платах.
Даже базовые материнские платы предоставляют несколько производных величин помимо основного напряжения, а в моделях класса high-end этих значений несметное количество. Порой даже опытным энтузиастам разгона трудно понять значение того или иного параметра. Мы постараемся объяснить все эти значения напряжений на понятном языке.
Первыми в данном вопросе путаницу вносят производители материнских плат. Производители CPU и наборов микросхем тоже дают официальные названия всех напряжений, каждый производитель материнских плат, по непонятным причинам, присваивает им свои названия. В мануалах к платам производитель обычно не объясняет значение того или иного названия. Сначала рассмотрим, какие названия напряжений производители CPU дают своим продуктам.
Процессоры производства Intel используют следующие напряжения (официальные названия):
VCC. Основное напряжение CPU, которое неофициально может называться, как Vcore. Обычно, когда говорят “напряжение центрального процессора”, то имеют в виду данную величину. Опция, которая управляет данным напряжением на материнских платах, может называться “CPU Voltage”, “CPU Core”, и т.д.
VCCPLL. Напряжение, используемое в CPU, для синхронизации внутренних множителей (PLL, Фазовая автоматическая подстройка частоты). Это напряжение может быть изменено с помощью “CPU PLL Voltage”.
VAXG. Напряжение, подаваемое на видеоконтроллер, интегрированный в CPU. Доступно на Pentium G6950, Core i3 5xxx и Core i5 6xx процессоры. Эта опция может называться “Graphics Core”, “GFX Voltage”, “IGP Voltage”, “IGD Voltage” и “VAXG Voltage”.
CPU clock voltage. Некоторые материнские платы позволяют Вам менять напряжение базовой частоты CPU. Это можно делать через опции, называемые “CPU Clock Driving Control” or “CPU Amplitude Control”.
Процессоры Intel. Напряжения, относящиеся к памяти. В то время, как у всех процессоров производства AMD есть встроенный контроллер памяти, то у процессоров Intel, эта особенность присутствует только у более новых моделей (Core i3, Core i5 и Core i7). Поэтому установка напряжений, относящихся к памяти, может быть произведена через настройки CPU или северного моста в составе набора микросхем (MCH, Memory Controller Hub), в зависимости от Вашей платформы. По этой причине напряжения и были разнесены на две группы.
На шине памяти может присутствовать три различных вида напряжений:
VDDQ. Сигнальное напряжение на шине памяти. JEDEC (организация, стандартизирующая память) называет эту величину напряжением SSTL (Stub Series Termination Logic). Это распространенная величина напряжения памяти, и она может скрываться за следующими названиями: “DIMM Voltage”, “DIMM Voltage Control”, “DRAM Voltage”, “DRAM Bus Voltage”, “Memory Over-Voltage”, “VDIMM Select”, “Memory Voltage” и т.д. Значение по умолчанию для этой линии 1.8 в для памяти DDR2 (SSTL_1.8) или 1.5 в для DDR3 (SSTL_1.5).
Termination voltage. Напряжение, подаваемое на логические схемы в чипах памяти. По умолчанию данное напряжение устанавливается, как половина значения напряжения
Процессоры Intel. Напряжения, относящиеся к набору микросхем. Опции, связанные с набором микросхем, включают все напряжения, которые не были описаны на предыдущей странице:
North bridge voltage. Это напряжение, которое подается на северный мост в составе набора микросхем системной платы. Отметим, что Intel называют северный мост, как MCH (Memory Controller Hub, на материнских платах для процессоров без интегрированного контроллера памяти), IOH (I/O Hub, на материнских платах, под CPU со встроенным контроллером памяти. Реализация набора микросхем в двух чипах) или PCH (Platform Controller Hub, на материнских платах, где CPU также имеет интегрированный контроллер памяти, но набор микросхем реализован в виде одного чипа). Таким образом, название данной опции может немного изменяться в зависимости от платформы. В случае наборов микросхем PCH существует два отдельных напряжения, VccVcore (обычно обозначается в настройках материнской платы как “PCH 1.05 V” или “PCH PLL Voltage” и является основным напряжением чипа), а также напряжение VccVRM (такие опции, как “PCH 1.8 V” или “PCH PLL Voltage” регулируют напряжение, подаваемое на внутренние множители чипа).
PCI Express voltage. Если Вы хотите изменить напряжение PCI Express, то нужно будет сначала определить, каким образом в Вашей системе управляются слоты и линии PCI Express. Например, некоторые CPU от Intel, могут управлять одной x16 или двумя x8 PCI Express линиями для подключения для видеокарт, а низкоскоростными PCI Express управляет набор микросхем (PCH). На некоторых других платформах управление слотами PCI Express для видеокарт осуществляется северным мостом (MCH или IOH), в то время как низкоскоростными PCI Express, управляет чип южного моста (ICH). Напряжение, используемое на линиях PCI Express, обычно, регулируется аппаратно, поэтому оно автоматически изменяется при изменении напряжений CPU, северного (PCH/MCH) или южное моста, в зависимости от того, где реализовано управление линиями PCI Express. В некоторых наборах микросхем (например, Intel X58) есть возможность устанавливать напряжения для линий PCI Express. На материнских платах, основанных на таких чипсетах, Вы найдете специальные опции для установки напряжения PCI Express. Например, “IOHPCIE Voltage” изменяет напряжение линий PCI Express, которым управляет северный мост материнской платы (IOH). А при помощи такой опции, как “ICHPCIE Voltage” можно устанавливать напряжение линий ICHPCIE Voltage, которыми управляет южный мост материнской платы (ICH).
PCI Express clock voltage. Некоторые материнские платы позволяют Вам устанавливать напряжение элементов, отвечающих за частоту шины PCI Express. Данный параметр может называться “PCI-E Clock Driving Control” или “PCI Express Amplitude Control”.
Мертвое зависание на 5-7 секунд с последующим отвисом
Добрый день, столкнулся с проблемой зависания системы Windows 7
Зависания замечались именно в системе (не в играх)
Конфигурация:
Core i7 3770 3.4 Ghz
Nvidia Gtx 770
2G Kingston KVR1333D3S8N9/2G и 2G KVR1333D3N9/2G
БП corsar CX600 на 600Вт
Материнка asus p8h67m-pro
Версия BIOS последняя для данной материнки
Подробная суть проблемы:
Происходит сначала зависание, но мышка бегает, далее секунды через 2 зависает и она, проходит ещё пару секунд компьютер отвисает с непонятным звуком, иногда без него. (Звук чем то похож на звук залипания клавиатуры когда shift много раз нажмешь)
Незнаю, что может быть. Поменял буквально 2 дня назад процессор, до этого стоял Core i5 2300 2.8Ghz. И чуть ранее поменяна была видеокарта gtx 550 ti на gtx 770 соответственно.
Windows переставлял, причем и на 8ку и на 7ку.
В журнале событий никаких ошибок не обнаружил.
Если есть какие либо идеи, буду благодарен.
Мертвое зависание
Началось все с установки 7 х32, было 1 гб ОЗУ и система часто зависала при работе с приложениями.
Мертвое зависание ПК
Бывает компьютер зависает намертво. Не реагирует на кнопку перезагрузке. Помогает только выключение.
Мертвое зависание кмпьютера
Добрый вечер, уважаемое сообщества Возникла проблема. Решил обновить старый компьютер. Купил.
Название темы понравилось. да, велик и могуч русский язык 🙂
Завышенное напряжение по всем линиям. Опасно ли это?
Здравствуйте! Пару месяцев назад я собрал компьютер:
Intel Core i5-3570, 3.40ГГц, 6МБ, LGA1155, OEM
ASUS P8H77-V, H77, Socket 1155, DDR3, ATX
1024МБ, Gigabyte GV-N550WF2-1GI, GTX550-TI, DVI, HDMI, VGA, GDDR5, 192-бит, Retail
кулер Zalman CNPS10X Optima, Socket 775/1156/1366/AM2/AM3/FM1
DDR3, 8ГБ (2×4ГБ), PC3-12800, 1600МГц, Kingston HyperX Genesis, XMP, KHX1600C9D3K2/8GX, BOX
OCZ-AGILITY3 (windows 7 pro x 64 bit)
Seagate ST500DM002-1BD142 (хранение данных)
Блок питания: ATX 700W OCZ ModXStream PRO, Active PFC, вентилятор 13.5 см, модульный, Retail, 700MXSP
На протяжении этих двух месяцев комп работает без неполадок (не считая того, что через месяц вышел из строя ЖД, за который мне вернули деньги по гарантии и я купил SSD-шник.
Теперь вопрос: насколько опасно для компьютера завышенное напряжение, которое показывается в BIOS-е и в EVEREST-е по всем линиям: Мне кажется, что такие показатели были с самого момента сборки и первого включения, но вот спросить я решил только сейчас. Если это опасно, то можно ли как-то решить данную проблему?
Скриншот BIOS-а и эвереста прилагаю. В эвересте значения примерно одинаковые, только по линии 12 вольт заниженное напряжение. Компьютер не разогнан (работает в стандартном режиме), да и не для разгона он брался.
Если вдруг картинка не грузится:
Причём эти напряжения всегда одинаковые, вне зависимости от того, насколько загружен комп (по крайней мере в EVERESTE напряжения не меняются
Прикрепленные файлы
Последовательность запуска материнской платы ноутбука
Зачастую диагностика неисправности материнской платы ноутбука осложняется тем,что в схеме нет последовательности запуска (Power Up Sequence).
В данной статье возьму за пример схему от ноутбука Lenovo ThinkPad Edge 14 LD-Note Calpella Discrete.
Как видим в этой схеме отсутствует последовательность запуска,что значительно осложняет представление о том, в какой момент тот или иной сигнал/напряжение должно появится.В этом случае можно найти схему от ближайшей модели в которой есть интересующая нас последовательность запуска и опираясь на неё провести диагностику.
В красных кружках подписаны цифры от 1 до 30 что и является количеством шагов до полного запуска платы.
Я распишу каждый из данных шагов и представлю их на схеме от Lenovo ThinkPad Edge 14 LD-Note Calpella Discrete где у нас последовательность запуска отсутствет.
Итак,мы разобрались с типом транзистора и его распиновкой.Теперь перейдём к схеме.
Для того чтобы он открылся нужно что бы на затворе(GATE)появился 0(за счёт этого PQ54 откроется,чтобы там появился 0,транзистор PQ56 должен быть открыт,таким образом подтягивая напряжение на затворе к земле и открывая PQ54.PQ56 это N-канальный транзистор и открывается положительным напряжением на затворе,в данном случае это сигнал ACOK,когда он появится на затворе PQ56,тот в свою очередь откроется и подтянет к земле 19V на затворе PQ54,таким образом открывая его и пропуская 19V на плату.Сигнал ACOK выходит с Chargera и равен напряжению от 3 до 5 вольт.Транзистор PQ3 при этом должен быть закрыт,так как через него шина VIN запитывается от АКБ.Для того чтобы PQ3 был закрыт на его затворе должно быть напряжение БП 19V.Что бы оно там появилось транзистор PQ6 так же должен быть открыт.Таким образом он пропустит через себя напряжение БП,его выход подключен к затвору PQ3,таким образом на затворе PQ3 появляется напряжение БП не давая ему открыться.При питании только от БП всё должно происходить так же.
Итак,на этом этапе мы разобрались как напряжение с БП попадает на общую шину VIN.
На рисунке 3 мы видим PQ3,через него запитывается шина VIN при питании только от АКБ.
PQ54 при этом должен быть закрыт.При питании только от АКБ сигнал ACOK равен 0.Соответственно PQ56 будет закрыт.
Напряжению на затворе PQ3 в этот момент будет отсутствовать,так что он будет находится в открытом состоянии.За счет того что в данный момент PQ56 закрыт,напряжение с PQ3 попадает на затвор PQ54 и он находится в закрытом состоянии.
Теперь когда мы разобрались как питание попадает на общую шину VIN,можно перейти к следующему шагу.
На пятом этапе присходит запитка EC контроллера от 3VPCU.Тут добавить нечего.
при нажатии кнопки включения NBSWON# просаживается до нуля,так как при нажатии кнопки NBSWON# замыкается на землю,таким образом на 125й ножке EC контроллера получается логический 0,что даёт ему команду на запуск.
Замена материнской платы ноутбука
Добрый день, форумчане Хотел бы обратиться с вопросом, касательно замены материнской платы для.
ASUS A3E Ищу схему материнской платы ноутбука
Необходима схема материнской платы ноутбука Asus A3E. Есть здесь, но за деньги. Может у кого.
Добрый день. Поделитесь, пожалуйста, схемой материнской платы ноутбука hp 15-p105er, модель платы DAY23AMB6C0 REV. C
Добрый день. Поделитесь, пожалуйста, схемой материнской платы ноутбука hp 15-p105er, модель платы.
Неизвестный компонент материнской платы ноутбука asus n53sv
Напишите название(маркировку) или скиньте четкое фото крупным планом данного компонента.
сигнал S5_ON есть и открывает транзистор PQ42 подтягивая к земле напряжение 5VPCU.Таким образом на втором выводе резистора PR112 будет 0V.За счёт этого и на затворе PQ77 будет 0V и он будет закрыт давая возможность напряжению 15V попасть на затворы Q67,PQ83,таким образом позволяя им открыться и сформировать напряжения 3V_S5,5V_S5.
Восьмым шагом собственно говоря было формирование 3V_S5,5V_S5,но так как мы это уже обсудили,то перейдём к шагу девять.
Десятый шаг последовательности запуска DNBSWON#,расшифровывается как Delayed Notebook Switch ON.В схеме Lenovo ThinkPad Edge 14 поиск не нашёл этот сигнал,но в схеме Lenovo Thinkpad E40 это 80я ножка EC контроллера,а учитывая что EC контроллеры одинаковые,сигнал на 80й ножке Lenovo ThinkPad Edge 14 будет такой же и называется он SIO_PWRBTN#.
После того как сигнал NBSWON# поступает на EC контроллер,тот в свою очередь передаёт его в виде сигнала SIO_PWRBTN# на хаб(I/O Controller Hub).
Одиннадцатый шаг это сигнал PM_SLP_S4# который идёт с хаба на EC контроллер в ответ на сигнал SIO_PWRBTN# с EC контроллера на хаб.Сигнал PM_SLP_S4# обычно равен напряжению 3.3V и приходит он на 73 ножку EC контроллера.
сигнал SUSON есть и за счёт этого транзистор PQ38 открыт и подтягивает 5VPCU к земле,за счёт этого на втором выводе резистора PR114 будет 0 и этот же 0 будет на затворе PQ78 и он будет закрыт,при этом 15V смогут через резистор PR257 попасть на затворы PQ66 и PQ85 открывая их и формируя 5VSUS,3VSUS из уже ранее появившихся 5VPCU и 3VPCU.
Напряжение 1.5VSUS формируется по другому,за него отвечает микросхема UP6163AQAG с позиционным номером PU10.
1.5VSUS это напряжение оперативной памяти,на рисунке 11
представлена таблица состояний и логические уровни сигналов S3 и S5 в том или ином состоянии,то есть в состоянии S4/S5 сигналы S3 и S5 будут иметь низкий логический уровень «0»,или 0 вольт,и напряжений VDDQ,VTTREF и VTT не будет.В состоянии S3 сигнал S3 будет иметь низкий логический уровень «0»,или 0 вольт,а сигнал S5 будет иметь высокий логический уровень «1» или 3.3 вольта,в таком состоянии напряжения VDDQ,VTTREF будут присутствовать,а напряжение VTT нет.В состоянии S0 сигналы S3 и S5 будут иметь высокий логический уровень «1» и все напряжения будут включены.Когда это произойдёт PU10 должна выдать сигнал PGOOD(Power Good) с 13й ножки,этот сигнал означает что с питанием формируемым данной микросхемой всё в порядке и напряжение этого сигнала должно составлять 3 вольта.
Тринадцатый шаг это PM_SLP_S3#(в схеме Lenovo Thinkpad E40,а в схеме Lenovo ThinkPad Edge 14 этот сигнал называется SIO_SLP_S3#,18я ножка EC контроллера,который так же выдаётся хабом в ответ на сигнал SIO_PWRBTN#,одновременно с сигналом PM_SLP_S4# и равен он 3.3V.Получив этот сигнал EC контроллер выдаст сигнал MAINON,но MAINON это уже четырнадцатый шаг,так что перейдём к нему.
Четырнадцатый шаг это сигнал MAINON который выдаёт EC контроллер с 96й ножки и этот сигнал является сигналом на включение таких напряжений как 0.75VSMDDR_VTERM,+5V,+3V,+1.8V,+1.5V,+1.05V_VTT.
Разберёмся по порядку.
0.75VSMDDR_VTERM напряжение терминации мы уже рассмотрели,когда сигнал MAINON становится сигналом S3 и запускает напряжение 0.75VSMDDR_VTERM,так что будем смотреть как получаются +5V,+3V.
Здесь всё так же как и с другими уже сформировавшимися напряжениями при помощи сигнала SUSON,поэтому объясню на словах.
Когда сигнал MAINON попадёт на затвор PQ39 тот в свою очередь откроется и подтянет к земле 5VPCU,таким образом на затворе PQ76 появится 0 и он будет закрыт,давая возможность 15ти вольтам попасть на затворы PQ79 и PQ65 после чего появятся напряжения +3V,+5V.
Теперь посмотрим как появляется 1.8V.За это напряжение отвечает микросхема OZ8116LN с позиционным номером PU8.Для того что бы это напряжение появилось,PU8 должна быть запитана.Для этого на 2ю ножку данной микросхемы должно приходить напряжение VIN,а так же дежурные 5VPCU на 5ю и 16ю ножку.Если с этим всё в порядке,то на данном этапе на её 3ю ножку(ON/SKIP)поступит сигнал MAINON,который и даст данной микросхеме команду на запуск и она сформирует напряжение 1.8V,после чего она должна выдать сигнал PGD(Power Good)c 4й ножки.
Теперь посмотрим как появляется 1.5V.Здесь всё так же просто как и с уже рассмотреными ранее напряжениями.MAINON имея высокий логический уровень откроет транзистор PQ26 и просадит 5V на землю.За счёт этого на затворе PQ27 будет выставлен 0 и он будет закрыт,позволив напряжению 15V попасть к затвору PQ29 и таким образом откроет его для формирования +1.5V.
Так же есть шаги 15а и 16а,это как и говорилось ранее сигналы Power Good которые в последующем становятся сигналами HWPG.Но об этом далее.
Что можно узнать об автомобиле по VIN и сколько это стоит
В объявлении о продаже машины не всегда пишут все детали.
Например, позже может выясниться, что машина была в серьезной аварии, работала в такси, за нее еще не выплатили кредит, а у последнего из пяти владельцев долги по алиментам. Чтобы не купить такой автомобиль, нужно проверять его по всем возможным базам. Автомобили в первую очередь идентифицируют по VIN или по номеру кузова — для автомобилей с японского рынка с правым рулем. Иногда проверку можно сделать прямо из дома, если номер указан в объявлении о продаже.
Бесплатные сервисы дают информацию по одному или нескольким параметрам проверки. Если собрать их все, то получится полноценная оценка автомобиля. Платные сервисы собирают все данные в одном отчете и дополняют его полезными подробностями, которые передали коммерческие компании. Например, отзывными кампаниями официальных дилеров или старыми объявлениями о продаже автомобиля с фотографиями и описаниями.
В этой статье расскажу, что такое VIN и зачем проверять по нему авто, что можно узнать об автомобиле по номеру, какие бесплатные государственные сервисы есть для проверки. Еще сравню возможности и цены популярных платных сервисов, а в конце объясню, почему к их отчетам не стоит относиться как к стопроцентной истине.
Что такое VIN
VIN — сокращение от английского Vehicle identification number — идентификационный номер транспортного средства. Он состоит из 17 цифр и букв, каждая из которых содержит информацию об автомобиле. У каждого автомобиля уникальный VIN, как отпечаток пальца у человека.
Код делится на три части:
Первая цифра или буква VIN — это географическая зона, в которой произвели автомобиль.