углы эйлера что это такое
Ещё одна статья про кватернионы и углы Эйлера
По работе у меня возникла необходимость переводить координаты объекта из углов Эйлера в кватернионы и обратно.
В ходе разбирательства пришлось прочитать несколько статей на Хабре, посвященных кватернионам и углам Эйлера, Википедию и просто методички и статьи разных ВУЗов. Для удобства приведу ссылки на статьи, с Хабра:
Формулы для пересчёта углов Эйлера в кватеринионы и обратно найти можно, но
Опишу коротко суть проблемы:
Собственно, об этом уже было сказано много раз. Зачем же писать новую статью? Дело в том, что информации о том, как переводить из углов Эйлера в кватернион и обратно — не так уж и много. И в большинстве случаев описывается только 1 или 2, 3, 6 систем углов Эйлера. Но не все 24. И по аналогии вывести остальные (и не ошибиться) не очень-то и просто. Во время «откапывания истины» мне удалось найти несколько онлайн-конвертеров из углов в кватернионы и по тому, в каком направлении увеличивается их возможность по конвертации можно понять, сколько ещё вариантов осталось не охвачено:
quat.zachbennett.com — один тип углов
energid.com — один тип углов
onlineconversion.com — один тип углов
quaternions.online — три типа углов
andre-gaschler.com — шесть типов углов
Не буду приводить в тексте статьи свои исходники (они написаны на языке Octave). Дам лишь ссылку на репозитарий и прокомментирую его содержимое:
Обеих функций в Octave нет. В Matlab поддерживаются только 6 типов углов Эйлера на неподвижных осях. В моих реализациях поддерживаются все 24 типа. При этом типы с буквой r на конце (например, XYZr) означают, что оси вращаются вместе с объектом. Типы с буквой s на конце (например, XYZs) означают, что оси остаются неподвижными.
Углы Эйлера
В сравнении с углами Эйлера, кватернионы позволяют проще комбинировать вращения, а также избежать проблемы, связанной с невозможностью поворота вокруг оси, независимо от совершённого вращения по другим осям (см. Кватернионы и вращение пространства).
Содержание
Определение
Углы Эйлера определяют три поворота системы, которые позволяют привести любое положение системы к текущему. Обозначим начальную систему координат как , конечную как
. Пересечение координатных плоскостей
и
называется линией узлов
.
Повороты системы на эти углы называются прецессия, нутация и поворот на собственный угол (вращение). Такие повороты некоммутативны и конечное положение системы зависит от порядка, в котором совершаются повороты. В случае углов Эйлера это последовательность 3,1,3 (Z,X,Z).
Интересные факты
Полукружные каналы во внутреннем ухе являются природным измерителем углового ускорения и частью вестибулярного аппарата человека. Схожесть с принципом углов Эйлера состоит в том, что три полукружных канала расположены перпендикулярно друг другу и заполнены жидкостью. Угловое ускорение по трём осям улавливается ворсинками, расположенными в куполе канала, когда жидкость, желая сохранить покой, проходит через них.
См. также
Литература
Полезное
Смотреть что такое «Углы Эйлера» в других словарях:
Углы — В Викисловаре есть статья «угол» Углы многозначный термин: Углы именительный падеж множественного числа слова угол … Википедия
ЭЙЛЕРА УРАВНЕНИЯ — 1) в механике динамич. и кинематич. ур ния, используемые в механике при изучении движения тв. тела; даны Л. Эйлером (L. Euler; 1765). Динамические Э. у. представляют собой дифф. ур ния движения тв. тела вокруг неподвижной точки и имеют вид: где… … Физическая энциклопедия
ЭЙЛЕРА УГЛЫ — [по имени математика и физика Л. Эйлера (L. Euler; 1707 83)] три угла, определяющие положение по отношению к неподвижной прямоугольной системе координат Oxyz твёрдого тела, к рое имеет одну неподвижную точку О. Пусть Ох у z подвижная… … Большой энциклопедический политехнический словарь
Эйлера число — e математическая константа, основание натурального логарифма, иррациональное и трансцендентное число. Иногда число e называют числом Эйлера (не путать с т. н. числами Эйлера I рода) или числом Непера. Обозначается строчной латинской буквой «e».… … Википедия
Эйлера уравнения — 1) в механике динамические и кинематические уравнения, используемые при изучении движения твёрдого тела; даны Л. Эйлером в 1765. Динамические Э. у. представляют собой дифференциальные уравнения движения твёрдого тела вокруг… … Большая советская энциклопедия
Список объектов, названных в честь Леонарда Эйлера — Существует множество математических и физических объектов, названных в честь Леонарда Эйлера: Содержание 1 Теоремы 2 Лемма 3 Уравнения 4 … Википедия
Интеграл Эйлера — Существует множество математических и физических объектов, названных в честь Леонарда Эйлера: Содержание 1 Теоремы 2 Лемма 3 Уравнения 4 Тождества 5 … Википедия
Число Эйлера — e математическая константа, основание натурального логарифма, иррациональное и трансцендентное число. Иногда число e называют числом Эйлера (не путать с т. н. числами Эйлера I рода) или числом Непера. Обозначается строчной латинской буквой «e».… … Википедия
Л. Эйлер — Леонард Эйлер Leonhard Euler Портрет 1756 года, выполненный Эмануэлем Хандманном Дата рождения: 4 (15) апреля 1707 Место рождения: Базель, Швейцария Дата смерти: 7 (18) сентября … Википедия
Кручу-верчу, запутать хочу: углы Эйлера и Gimbal lock
Выставите любой палец левой руки вперед. Давайте, не стесняйтесь, никто не будет над вами смеяться. Это нужно для важного эксперимента. Выставили? Теперь представьте что вы — это ваш палец (ну и бред). Повернитесь под прямым углом направо, затем наверх, и наконец налево. Где вы оказались? Правильно, в том же месте, но уже на спине.
С некоторой натяжкой именно так работает вращение с помощью углов Эйлера. Немного непредсказуемо и неудобно, не правда ли? Углы Эйлера имеют несколько недостатков, но есть одно особенно нехорошее свойство из-за которого вы не захотите с ними связываться. Его имя — Gimbal lock.
В русском языке gimbal lock называют по-разному: шарнирный замок, блокировка осей, складывание рамок. К сожалению, по запросам в поисковике с такими ключевыми словами выдаётся много мусора, а статья в Википедии оставляет желать лучшего, поэтому я сам расскажу вам об этом феномене и предложу как с ним бороться.
Внимание! Заходя под кат вы подвергаетесь риску поломать голову.
Для начала напомню что такое углы Эйлера. Вы наверное помните, что это что-то вроде набора из трёх углов вращения вокруг осей X, Y и Z? Не совсем так. Предположим, вы хотите повернуть некий объект, и у вас есть набор конечных углов (X: 45°, Y: 45°, Z: 45°). Один из подвохов эйлеровых углов — необходимость выбора какого-то одного порядка поворотов. Если сначала повернуть на 45° вокруг оси X, затем вокруг Y и в конце вокруг Z, то получится результат как на левой половине картинки снизу. Если порядок будет Z-X-Y, то результат будет другой, как на правой половинке.
Это взорвались головы особо впечатлительных читателей. Поясню то же самое со стрелочками.
Когда оси совпадают, теряется одна степень свободы. Это и есть шарнирный замок. Вы хотите сделать поворот, но у вас не хватает осей, чтобы его осуществить.
Шарнирный замок появляется в середине иерархии поворотов. Если использовать порядок X-Y-Z или Z-Y-X, то поворот направо или налево будет заклинивать анимацию. Поскольку такой поворот встречается гораздо чаще чем, например, поворот в сторону зенита или надира, то во многих программах используют последовательность Z-X-Y. Такая иерархия поворотов используется в Unity3d, правда внутри все вращения всё равно хранятся в кватернионах. Что такое кватернионы? Об этом лучше рассказать отдельно. Кватернионы и матрицы вращения это один из способов избежать шарнирного замка. Также существуют хитрые алгоритмы, которые плавно обходят замок стороной, но это отражается на качестве анимации. Лучше всего использовать углы Эйлера только для простых случаев: пропеллеры, колёса, маятники. Иногда можно поменять иерархию поворотов, но тогда всё равно придётся помнить о замке.
По ссылкам ниже можете посмотреть интерактивную демонстрацию шарнирного замка на примере гироскопа. С ним понять иерархию поворотов и ситуации с замком намного проще.
Мышкой вращать сцену, Esc — выход, остальные кнопки указаны на экране.
Для пользователей Linux:
Сделайте файл GimbalLock исполняемым с помощью «chmod +x GimbalLock» и запускайте.
Они также могут отображать ориентацию мобильного точка зрения в физике или ориентация на общую основа в 3-х мерный линейная алгебра. Альтернативные формы были позже введены Питер Гатри Тейт и Джордж Х. Брайан предназначен для использования в авиастроении и технике.
Содержание
Эквивалентность цепных вращений
Углы Эйлера могут быть определены элементарным геометрия или по составу вращений. Геометрическое определение показывает, что три составленных элементарные вращения (вращения вокруг осей система координат) всегда достаточно для достижения любого целевого кадра.
Три вращения элементов могут быть внешний (вращения вокруг осей xyz исходной системы координат, которая предполагается неподвижной), или внутренний (вращения вокруг осей вращающейся системы координат XYZ, солидарен с движущимся телом, меняющим ориентацию после каждого элементарного вращения).
Углы Эйлера обычно обозначают как α, β, γ, или же ψ, θ, φ. Разные авторы могут использовать разные наборы осей вращения для определения углов Эйлера или разные имена для одних и тех же углов. Следовательно, любому обсуждению, использующему углы Эйлера, всегда должно предшествовать их определение.
Без учета возможности использования двух различных соглашений для определения осей вращения (внутренней или внешней) существует двенадцать возможных последовательностей осей вращения, разделенных на две группы:
Углы Тейта – Брайана также называют Углы кардана; морские углы; Заголовок, высота и берег; или же рыскание, тангаж и крен. Иногда оба вида последовательностей называют «углами Эйлера». В этом случае последовательности первой группы называются правильный или же классический Углы Эйлера.
Правильные углы Эйлера
Геометрическое определение
Углы Эйлера между двумя опорными кадрами определяются только в том случае, если оба кадра имеют одинаковые руки.
Соглашения по внутреннему вращению
Углы Эйлера могут быть определены внутренними вращениями. Повернутая рама XYZ можно представить, что изначально он был согласован с xyz, прежде чем претерпеть три элементарных вращения, представленных углами Эйлера. Его последовательные ориентации можно обозначить следующим образом:
Для указанной выше последовательности поворотов линия узлов N можно просто определить как ориентацию Икс после первого вращения элементаля. Следовательно, N можно просто обозначить Икс′. Более того, поскольку третье вращение элемента происходит около Z, это не меняет ориентацию Z. Следовательно Z совпадает с z″. Это позволяет упростить определение углов Эйлера следующим образом:
Соглашения по внешнему вращению
В общем, три вращения элементов происходят примерно на z, Икс и z. Действительно, эту последовательность часто обозначают z—Икс—z (или 3-1-3). Наборы осей вращения, связанные как с собственными углами Эйлера, так и с углами Тейта – Брайана, обычно называются с использованием этой нотации (подробности см. Выше).
Знаки, диапазоны и условные обозначения
Углы обычно определяются в соответствии с правило правой руки. А именно, они имеют положительные значения, когда они представляют собой вращение по часовой стрелке, если смотреть в положительном направлении оси, и отрицательные значения, когда вращение появляется против часовой стрелки. Противоположное соглашение (правило левой руки) применяется реже.
Углы α, β и γ определены однозначно, за исключением особого случая, когда ху и XY самолеты идентичны, т.е. когда z ось и Z оси имеют одинаковое или противоположное направление. Действительно, если z ось и Z оси такие же, β = 0 и только (α + γ) однозначно определено (а не отдельные значения), и, аналогично, если z ось и Z оси противоположны, β = π и только (α − γ) однозначно определено (а не отдельные значения). Эти двусмысленности известны как карданный замок в приложениях.
Есть шесть возможностей выбора осей вращения для собственных углов Эйлера. Во всех них первая и третья оси вращения совпадают. Шесть возможных последовательностей:
Прецессия, нутация и собственное вращение
Статическое определение подразумевает, что:
Хотя все три движения могут быть представлены оператором вращения с постоянными коэффициентами в некоторой системе отсчета, они не могут быть представлены этими операторами одновременно. При заданной системе отсчета максимум одна из них будет без коэффициентов. Только прецессия может быть выражена в общем виде в виде матрицы в основе пространства без зависимостей других углов.
Эти движения также действуют как карданный подвес. Если мы предположим набор кадров, каждый из которых может перемещаться по отношению к предыдущему только под одним углом, как у подвеса, будет существовать внешний фиксированный кадр, один последний кадр и два кадра посередине, которые называются «промежуточными». кадры ». Два в середине работают как два карданных кольца, которые позволяют последней рамке достигать любой ориентации в пространстве.
Углы Тейта – Брайана
Второй тип формализма называется Углы Тейта – Брайана, после Питер Гатри Тейт и Джордж Х. Брайан. Это соглашение, обычно используемое для аэрокосмических приложений, так что нулевой угол места соответствует горизонтальному положению. Углы Тейта-Брайана представляют ориентацию самолета относительно мировой системы координат. При работе с другими транспортными средствами разные топоры соглашения возможны.
Определения
Определения и обозначения, используемые для углов Тейта – Брайана, аналогичны описанным выше для собственных углов Эйлера (геометрическое определение, определение внутреннего вращения, определение внешнего вращения). Единственное отличие состоит в том, что углы Тейта – Брайана представляют собой вращения вокруг трех различных осей (например, Икс—у—z, или же Икс—у′-z″), В то время как правильные углы Эйлера используют одну и ту же ось как для первого, так и для третьего вращения элемента (например, z—Икс—z, или же z—Икс′-z″).
Отсюда следует другое определение линия узлов в геометрической конструкции. В случае собственных углов Эйлера это было определено как пересечение двух гомологичных декартовых плоскостей (параллельных, когда углы Эйлера равны нулю; например, ху и XY). В случае углов Тейта-Брайана он определяется как пересечение двух негомологических плоскостей (перпендикулярных, когда углы Эйлера равны нулю; например, ху и YZ).
Конвенции
Три вращения элемента могут происходить либо вокруг осей исходной системы координат, которая остается неподвижной (внешние вращения), или вокруг осей вращающейся системы координат, которая меняет свою ориентацию после каждого элементарного вращения (собственное вращение).
Есть шесть возможностей выбора осей вращения для углов Тейта – Брайана. Шесть возможных последовательностей:
Знаки и диапазоны
Соглашение Тейта – Брайана широко используется в инженерии с разными целями. Есть несколько топоры соглашения на практике для выбора подвижных и неподвижных осей, и эти условности определяют знаки углов. Поэтому знаки необходимо изучать в каждом конкретном случае внимательно.
Диапазон углов ψ и φ обложки 2 π радианы. За θ ассортимент охватывает π радианы.
Альтернативные названия
Эти углы обычно принимаются равными единице во внешней системе отсчета (Заголовок, несущий), одна в собственной подвижной системе отсчета (банк) и один в средней рамке, представляющий высота или наклон по отношению к горизонтальной плоскости, что для этой цели эквивалентно линии узлов.
Для самолета их можно получить за три оборота вокруг своей оси. главные оси если все сделано в правильном порядке. А рыскание получит подшипник, подача даст высоту, а крен дает угол крена. Поэтому в авиакосмической сфере их иногда называют рыскание, тангаж и крен. Обратите внимание, что это не будет работать, если повороты применяются в любом другом порядке, или если оси самолета начать в любом положении, не эквивалентна системе отсчета.
Углы Тейта – Брайана, следующие z—у′-Икс″ (Внутреннее вращение), также известное как морские углы, потому что они могут использоваться для описания ориентации корабля или самолета, или Углы кардана, в честь итальянского математика и физика Джероламо Кардано, который впервые подробно описал Карданная подвеска и Карданный шарнир.
Углы данного кадра
Правильные углы Эйлера
Предполагая кадр с единичные векторы (Икс, Y, Z), заданные их координатами, как на основной диаграмме, можно увидеть, что:
и наконец, используя обратный косинус функция
Углы Тейта – Брайана
Предполагая кадр с единичные векторы (Икс, Y, Z), заданные их координатами, как на этой новой диаграмме (обратите внимание, что угол тета отрицательный), можно увидеть, что:
Ищем выражения, похожие на предыдущие:
Последние замечания
Обратите внимание, что функции обратного синуса и косинуса дают два возможных значения аргумента. В этом геометрическом описании действительно только одно из решений. Когда углы Эйлера определены как последовательность поворотов, все решения могут быть действительными, но внутри диапазонов углов будет только одно. Это связано с тем, что последовательность поворотов для достижения целевого кадра не уникальна, если диапазоны не определены ранее. [2]
Преобразование в другие представления ориентации
Наиболее часто используемым представлением ориентации являются матрицы вращения, то ось-угол и кватернионы, также известный как Параметры Эйлера – Родригеса, которые обеспечивают другой механизм для представления трехмерных вращений. Это эквивалентно описанию специальной унитарной группы.
Выражение вращений в 3D в виде единичных кватернионов вместо матриц имеет некоторые преимущества:
Матрица вращения
Любая ориентация может быть достигнута путем составления трех элементарных вращений, начиная с известной стандартной ориентации. Равнозначно любой матрица вращения р возможно разложенный как продукт трех элементарных матриц вращения. Например:
матрица вращения, которая может использоваться для представления композиции внешние вращения о топорах z, у, Икс, (в таком порядке), или состав собственное вращение о топорах Икс—у′-z» (в этой последовательности). Однако оба определения матриц вращения элементов Икс, Y, Z, и порядок их умножения зависят от выбора, сделанного пользователем в отношении определения как матриц вращения, так и углов Эйлера (см., например, Неоднозначности в определении матриц вращения). К сожалению, разные наборы соглашений принимаются пользователями в разных контекстах. Следующая таблица была построена в соответствии с этим набором соглашений:
Для простоты в следующей таблице матричных продуктов используется следующая номенклатура:
Чтобы изменить формулы для пассивные вращения (или найти обратное активное вращение), транспонировать матрицы (затем каждая матрица преобразует начальные координаты вектора, остающегося фиксированным, в координаты того же вектора, измеренного в повернутой системе отсчета; та же ось вращения, те же углы, но теперь система координат вращается, а не вектор).
Характеристики
Геометрическая алгебра
Высшие измерения
Можно определить параметры, аналогичные углам Эйлера, в размерностях больше трех. [5]
Число степеней свободы матрицы вращения всегда меньше квадрата размерности матрицы. То есть не все элементы матрицы вращения полностью независимы. Например, матрица вращения в размерности 2 имеет только одну степень свободы, поскольку все четыре ее элемента зависят от одного угла поворота. Матрица вращения в размерности 3 (которая имеет девять элементов) имеет три степени свободы, соответствующие каждому независимому вращению, например, по ее трем углам Эйлера или кватерниону величиной один (единичный).
В ТАК (4) матрица вращения определяется двумя кватернионами, и поэтому является 6-параметрическим (три степени свободы для каждого кватерниона). В 4 × 4 Таким образом, матрицы вращения имеют 6 из 16 независимых компонентов.
Любой набор из 6 параметров, определяющих матрицу вращения, можно рассматривать как расширение углов Эйлера до измерения 4.
Приложения
Транспортные средства и движущиеся рамы
Изучая твердые тела в целом, мы называем xyz система космические координаты, а XYZ система координаты тела. Пространственные координаты считаются неподвижными, в то время как координаты тела считаются вложенными в движущееся тело. Расчеты с участием ускорение, угловое ускорение, угловая скорость, угловой момент, и кинетическая энергия часто проще всего в телесных координатах, потому что тогда тензор момента инерции не меняется во времени. Если также диагонализовать тензор момента инерции твердого тела (с девятью компонентами, шесть из которых независимы), то получится набор координат (называемых главными осями), в котором тензор момента инерции имеет только три компонента.
Угловая скорость твердого тела равна простая форма с использованием углов Эйлера в подвижной системе отсчета. Так же Уравнения твердого тела Эйлера проще, потому что тензор инерции постоянен в этой системе отсчета.
Кристаллографическая текстура
В материаловедении, кристаллографическом текстура (или предпочтительную ориентацию) можно описать с помощью углов Эйлера. В текстурном анализе углы Эйлера обеспечивают математическое описание ориентации отдельных кристаллитов в поликристаллическом материале, что позволяет количественно описать макроскопический материал. [8] Наиболее распространенное определение углов принадлежит Бунге и соответствует ZXZ соглашение. Однако важно отметить, что приложение обычно включает в себя преобразования осей тензорных величин, то есть пассивные вращения. Таким образом, матрица, соответствующая углам Бунге-Эйлера, является транспонированной матрицей, показанной в таблице выше. [9]
Другие
Углы Эйлера, обычно в соглашении Тейта – Брайана, также используются в робототехника за то, что говорят о степенях свободы запястье. Они также используются в электронный контроль устойчивости Аналогичным образом.
Системы управления огнем орудия требуют корректировки углов расположения орудий (пеленг и возвышение), чтобы компенсировать наклон палубы (тангаж и крен). В традиционных системах стабилизирующий гироскоп с вертикальной осью вращения корректирует наклон палубы и стабилизирует оптические прицелы и антенну радара. Однако стволы орудия указывают в направлении, отличном от линии визирования цели, чтобы предвидеть движение цели и падение снаряда под действием силы тяжести, среди других факторов. Артиллерийские установки катятся и наклоняются вместе с плоскостью палубы, но также требуют стабилизации. Порядок пушки включает углы, вычисленные из данных вертикального гироскопа, и эти вычисления включают углы Эйлера.
Углы Эйлера также широко используются в квантовой механике углового момента. В квантовой механике явное описание представлений SO (3) очень важно для вычислений, и почти вся работа была проделана с использованием углов Эйлера. В ранней истории квантовой механики, когда физики и химики резко отрицательно относились к абстрактным теоретико-групповым методам (так называемым Группенпест), опора на углы Эйлера также была необходима для фундаментальной теоретической работы.
Многие мобильные вычислительные устройства содержат акселерометры которые могут определять углы Эйлера этих устройств относительно гравитационного притяжения Земли. Они используются в таких приложениях, как игры, пузырьковый уровень симуляции и калейдоскопы. [ нужна цитата ]