теория вероятности что такое гипотеза
Вероятность гипотез. Формулы Бейеса
Следствия теорем сложения и умножения.
Формула полной вероятности
Пусть событие A может наступить при условии появления одного из несовместных событий , которые образуют полную группу и известны вероятности этих событий и условные вероятности
события A. Как найти вероятность события A? Ответ на этот вопрос дает следующая теорема.
Теорема 5.1. Вероятность события A, которое может наступить лишь при условии появления одного из несовместных событий , образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:
(5.1)
Эту формулу называют «формулой полной вероятности».
По условию, событие A может наступить, если наступит одно из несовместных событий
. Другими словами, появление события A означает осуществление одного, безразлично какого, из несовместных событий
. Пользуясь для вычисления вероятности события A теоремой сложения, получим
(*)
По теореме умножения вероятностей зависимых событий имеем
.
Подставив правые части этих равенств в соотношение (*), получим формулу полной вероятности
Гипотеза — деталь извлечена из первого набора.
Гипотеза — деталь извлечена из второго набора.
Вероятность того, что деталь вынута из первого набора, = 0,5.
Вероятность того, что деталь вынута из второго набора, = 0,5.
Условная вероятность того, что из первого набора будет извлечена стандартная деталь, = 0,8.
Условная вероятность того, что из второго набора будет извлечена стандартная деталь, = 0,9.
Искомая вероятность того, что извлеченная наудачу деталь — стандартная, по формуле полной вероятности равна
= 0,5
0,8 + 0,5
0,9 = 0,85.
Вероятность гипотез. Формулы Бейеса
Пусть событие A может наступить при условии появления одного из несовместных событий , образующих полную группу. Поскольку заранее не известно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события А определяется по формуле полной вероятности :
. (*)
Допустим, что произведено испытание, в результате которого появилось событие А. Определим, как изменились вероятности гипотез в связи с тем, что событие A уже наступило. Другими словами, будем искать условные вероятности
Найдем условную вероятность . По теореме умножения имеем
Отсюда, заменив здесь P (А) по формуле (*), получим
.
Аналогично выводятся формулы, определяющие условные вероятности остальных гипотез, т. е. условная вероятность любой гипотезы может быть вычислена по формуле
(5.2)
Полученные формулы называют формулами Бейеса (по имени английского математика, который их вывел; опубликованы в 1764 г.). Формулы Бейеса позволяют переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.
Решение. Обозначим через А событие, состоящее в том, что годная деталь признана стандартной. Можно сделать два предположения:
1) деталь проверил первый контролер (гипотеза );
2) деталь проверил второй контролер (гипотеза ).
Искомую вероятность найдем по формуле Бейеса: .
По условию задачи имеем:
= 0,6 (вероятность того, что деталь попадает к первому контролеру);
= 0,4 (вероятность того, что деталь попадет ко второму контролеру);
= 0,94 (вероятность того, что годная деталь будет признана
стандартной первым контролером);
= 0,98 (вероятность того, что годная деталь будет признана
стандартной вторым контролером).
= (0,6
0,94)/(0,6
0,94 + 0,4
0,98)
0,59.
Как видно, до испытания вероятность гипотезы равнялась 0,6, а после того, как стал известен результат испытания, вероятность этой гипотезы (точнее, условная вероятность) изменилась и стала равней 0,59. Таким образом, использование формулы Бейеса позволило переоценить вероятность рассматриваемой гипотезы.
Формула Бернулли
Если производится несколько испытаний, причем вероятность события A в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно события А.
В разных независимых испытаниях событие A может иметь либо различные вероятности, либо одну и ту же вероятность. Будем далее рассматривать лишь такие независимые испытания, в которых событие A имеет одну и ту же вероятность.
Ниже воспользуемся понятием сложного события, понимая под ним совмещение нескольких отдельных событий, которые называют простыми.
Искомую вероятность обозначим . Например, символ
означает вероятность того, что в пяти испытаниях событие появится ровно 3 раза и не наступит 2 раза.
Поставленную задачу можно решить с помощью формулы Бернулли.
. (5.3)
Полученную формулу называют формулой Бернулли.
Пример. Вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна p = 0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.
Искомая вероятность по формуле Бернулли равна
.
Теория вероятности что такое гипотеза
1. Статистические гипотезы. Основные понятия.
2. Гипотезы о законе распределения.
3. Гипотезы о числовом значении генерального среднего и дисперсии.
1. Статистические гипотезы. Основные понятия.
В тех случаях, когда известен закон, но неизвестны значения его параметров (дисперсия или математическое ожидание) в конкретной ситуации, статистическую гипотезу называют параметрической.
Например, предположение об ожидаемом среднем доходе по акциям или разбросе дохода являются параметрическими гипотезами.
Когда закон распределения генеральной совокупности не известен, но есть основания предположить, каков его конкретный вид, выдвигаемые гипотезы о виде его распределения называются непараметрическими.
Например, можно выдвинуть гипотезу, что число дневных продаж в магазине или доход населения подчинены нормальному закону распределения.
По содержанию статистические гипотезы можно классифицировать:
1. Гипотезы о типе вероятностного закона распределения случайной величины, характеризующего явление или процесс.
2. Гипотезы об однородности двух или более обрабатываемых выборок. Изучаемое свойство исследуется с помощью двух или более генеральных совокупностей. Гипотеза в этом случае может заключаться в следующем: исследуемые выборочные характеристики различаются между собой статистически значимо или нет.
3. Гипотезы о свойствах числовых значений параметров исследуемой генеральной совокупности. Больше ли значения параметров некоторого заданного номинала или меньше и т.д.
4. Гипотезы о вероятностной зависимости двух или более признаков, характеризующих различные свойства рассматриваемого явления или процесса. При этом определяется характер этой зависимости.
Гипотезы бывают простые (содержащие одно предположение) и сложные (содержащие несколько предположений).
Под статистическим критерием понимают однозначно определенное правило, устанавливающее условие, при котором проверяемая гипотеза отвергается либо не отвергается.
Увеличение числа заболевших некоторым заболеванием дает возможность выдвинуть гипотезу о наличии эпидемии. Для сравнения доли заболевших в обычных и экстремальных условиях используются статистические данные, на основании которых делается вывод о том, является ли данное массовое заболевание эпидемией. Предполагается, что существует некоторый критерий- уровень доли заболевших, критический для этого заболевания, который устанавливается по ранее имевшимся случаям.
Различают три вида критериев:
Проверка параметрических гипотез проводится на основе критериев значимости., а непараметрических- критериев согласия.
Задача проверки статистических гипотез сводится к исследованию генеральной совокупности по выборке. Множество возможных значений элементов выборки может быть разделено на два непересекающихся подмножества- критическую область и область принятия гипотезы.
Областью принятия гипотезы или областью допустимых значений Iдоп называют совокупность значений критерия, при которых эту гипотезу принимают.
Критической областью Iкр называют множество значений критерия, при котором гипотезу отвергают.
Наблюдаемые значения критерия (статистика) Kнабл называют такое значение критерия, которое находится по данным выборки.
С помощью уровня значимости определяются границы критической области.
Основной принцип проверки статистических гипотез состоит в следующем: если наблюдаемое значение статистики критерия попадает (не попадает) в критическую область, то гипотеза H0 отвергается (принимается), а гипотеза H1 принимается (отвергается) в качестве одного из возможных решений с формулировкой «гипотеза H0 противоречит (не противоречит) выборочным данным на уровне значимости ».
В зависимости от содержания альтернативной гипотезы осуществляется выбор критической области: левосторонней, правосторонней, двусторонней. Если смысл исследования заключается в доказательстве конкретного изменения наблюдаемого параметра (его уменьшения или увеличения), то говорят об односторонней критической области. Если смысл исследования- выявить различия в изучаемых параметрах, но характер их отклонения от контрольных (или теоретических) не известен, то говорят о двусторонней критической области.
Однако, принятие той или иной гипотезы не дает оснований утверждать, что она верна. Результат проверки статистической гипотезы лишь устанавливают на определенном уровне значимости ее соответствие (несоответствие) результатам эксперимента.
При проверке статистических гипотез возможны следующие ошибки:
2. Отвергнута правильная альтернативная гипотеза H1 и принята неправильная нулевая гипотеза H0 — ошибка второго рода.
Можно доказать, что с уменьшением ошибок первого рода одновременно увеличиваются ошибки второго рода и наоборот. Поэтому, на практике пытаются подбирать значения параметров и опытным путем в целях минимизации суммарного эффекта от возможных ошибок. При принятии управленческих решений для одновременного уменьшения ошибок первого и второго рода самым действенным средством является увеличение объема выборки, что согласуется с законом больших чисел.
На бытовом уровне ошибки второго рода могут иметь более трагические последствия, чем ошибки первого рода.
2. Гипотеза о законе распределения. Критерий согласия Пирсона ( X 2 -критерий).
Критериями согласия называют критерии, в которых гипотеза определяет закон распределения либо полностью, либо с точностью до небольшого числа параметров.
Причины расхождения результатов эксперимента и теоретических характеристик могут быть вызваны малым объемом выборки, неудачным способом группировки наблюдений, ошибками в выборе гипотезы о виде распределения генеральной совокупности и др.
Рассмотрим универсальный критерий согласия Пирсона. Проверка гипотезы о том, что эмпирическая частота мало отличается от соответствующей теоретической частоты, осуществляется с помощью величины X 2 — меры расхождения между ними.
Для произвольной выборки, когда распределение непрерывно или число различных вариант велико, все пространство наблюдаемых вариант делят на конечное число непересекающихся областей, в каждой из которых подсчитывают наблюдаемую частоту и теоретическую вероятность.
Для применения критерия согласия Пирсона необходимо:
Формула полной вероятности. Вероятность гипотез
Формула полной вероятности. Вероятность гипотез
Формула полной вероятности. Вероятность гипотез
Формула полной вероятности
Вероятность гипотез. Формула Байеса
Для этого используем теорему умножения.
$P(AB_1)=P(A)\cdot P_A(B_1)=P(B_1)\cdot P_ < B_ < 1 >> (A)$
$P_A ( < B_1 >)=\frac < P( < B_1 >)\cdot P_ < B_1 >( A ) > < P( A ) >$, Формула Байеса
Сделаем два предположения, две гипотезы:
Далее:
Функции k-значной логики. Элементарные функции. Лемма об аналоге правила де Моргана
Функции 2-значной логики. Лемма о числе функций. Элементарные функции 1-ой и 2-х переменных
Теорема о предполных классах
Гармонические поля
Вычисление двойного интеграла. Двукратный интеграл
Теорема об аналоге СДНФ в Pk
Вычисление объёмов
Соленоидальное векторное поле
Механические приложения тройного интеграла
Теорема Остроградского
СДНФ. Теорема о представлении в виде СДНФ. Построение СДНФ по таблице
Дифференциальные характеристики векторного поля
Вычисление площади поверхности
Определение тройного интеграла. Теорема существования тройного интеграла
Формула полной вероятности и формулы Байеса
На данном уроке мы рассмотрим важное следствие теорем сложения и умножения вероятностей и научимся решать типовые задачи по теме. Читателям, которые ознакомились со статьёй о зависимых событиях, будет проще, поскольку в ней мы уже по факту начали использовать формулу полной вероятности. Если Вы зашли с поисковика и/или неважно разбираетесь в теории вероятностей (ссылка на 1-й урок курса), то сначала рекомендую посетить указанные страницы.
Собственно, продолжаем. Рассмотрим зависимое событие , которое может произойти лишь в результате осуществления одной из несовместных гипотез
, которые образуют полную группу. Пусть известны их вероятности
и соответствующие условные вероятности
. Тогда вероятность наступления события
равна:
Эта формула получила название формулы полной вероятности. В учебниках она формулируется теоремой, доказательство которой элементарно: согласно алгебре событий, (произошло событие
и после него наступило событие
или произошло событие
и после него наступило событие
или произошло событие
и после него наступило событие
или …. или произошло событие
и после него наступило событие
). Поскольку гипотезы
несовместны, а событие
– зависимо, то по теореме сложения вероятностей несовместных событий (первый шаг) и теореме умножения вероятностей зависимых событий (второй шаг):
Наверное, многие предчувствуют содержание первого примера =)
Куда ни плюнь – везде урна:
Имеются три одинаковые урны. В первой урне находятся 4 белых и 7 черных шаров, во второй – только белые и в третьей – только черные шары. Наудачу выбирается одна урна и из неё наугад извлекается шар. Какова вероятность того, что этот шар чёрный?
Решение: рассмотрим событие – из наугад выбранной урны будет извлечён чёрный шар. Данное событие может произойти или не произойти в результате осуществления одной из следующих гипотез:
– будет выбрана 1-я урна;
– будет выбрана 2-я урна;
– будет выбрана 3-я урна.
Так как урна выбирается наугад, то выбор любой из трёх урн равновозможен, следовательно:
Обратите внимание, что перечисленные гипотезы образуют полную группу событий, то есть, по условию чёрный шар может появиться только из этих урн, а например, не прилететь с бильярдного стола. Проведём простую промежуточную проверку: , ОК, едем дальше:
В первой урне 4 белых + 7 черных = 11 шаров, по классическому определению:
– вероятность извлечения чёрного шара при условии, что будет выбрана 1-я урна.
Во второй урне только белые шары, поэтому в случае её выбора появление чёрного шара становится невозможным: .
И, наконец, в третьей урне одни чёрные шары, а значит, соответствующая условная вероятность извлечения чёрного шара составит (событие достоверно).
По формуле полной вероятности:
– вероятность того, что из наугад выбранной урны будет извлечен чёрный шар.
Ответ:
Разобранный пример снова наводит на мысль о том, как важно ВНИКАТЬ В УСЛОВИЕ. Возьмём те же задачи с урнами и шарами – при их внешней схожести способы решения могут быть совершенно разными: где-то требуется применить только классическое определение вероятности, где-то события независимы, где-то зависимы, а где-то речь о гипотезах. При этом не существует чёткого формального критерия для выбора пути решения – над ним почти всегда нужно думать. Как повысить свою квалификацию? Решаем, решаем и ещё раз решаем!
В тире имеются 5 различных по точности боя винтовок. Вероятности попадания в мишень для данного стрелка соответственно равны 0,5; 0,55; 0,7; 0,75 и 0,4. Чему равна вероятность попадания в мишень, если стрелок делает один выстрел из случайно выбранной винтовки?
Краткое решение и ответ в конце урока.
В большинстве тематических задач гипотезы, конечно же, не равновероятны:
В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок производит один выстрел из наудачу взятой винтовки.
Решение: в этой задаче количество винтовок точно такое же, как и в предыдущей, но вот гипотезы всего две:
– стрелок выберет винтовку с оптическим прицелом;
– стрелок выберет винтовку без оптического прицела.
По классическому определению вероятности: .
Контроль:
Рассмотрим событие: – стрелок поразит мишень из наугад взятой винтовки.
По условию: .
По формуле полной вероятности:
Ответ: 0,85
На практике вполне допустим укороченный способ оформления задачи, который вам тоже хорошо знаком:
Решение: по классическому определению: – вероятности выбора винтовки с оптическим и без оптического прицела соответственно.
По условию, – вероятности попадания в мишень из соответствующих типов винтовок.
По формуле полной вероятности:
– вероятность того, что стрелок поразит мишень из наугад выбранной винтовки.
Ответ: 0,85
Следующая задача для самостоятельного решения:
Двигатель работает в трёх режимах: нормальном, форсированном и на холостом ходу. В режиме холостого хода вероятность его выхода из строя равна 0,05, при нормальном режиме работы – 0,1, а при форсированном – 0,7. 70% времени двигатель работает в нормальном режиме, а 20% – в форсированном. Какова вероятность выхода из строя двигателя во время работы?
На всякий случай напомню – чтобы получить значения вероятностей проценты нужно разделить на 100. Будьте очень внимательны! По моим наблюдениям, условия задач на формулу полной вероятности частенько пытаются подзапутать; и я специально подобрал такой пример. Скажу по секрету – сам чуть не запутался =)
Решение в конце урока (оформлено коротким способом)
Задачи на формулы Байеса
Материал тесно связан с содержанием предыдущего параграфа. Пусть событие наступило в результате осуществления одной из гипотез
. Как определить вероятность того, что имела место та или иная гипотеза?
При условии, что событие уже произошло, вероятности гипотез переоцениваются по формулам, которые получили фамилию английского священника Томаса Байеса:
– вероятность того, что имела место гипотеза
;
– вероятность того, что имела место гипотеза
;
– вероятность того, что имела место гипотеза
;
…
– вероятность того, что имела место гипотеза
.
На первый взгляд кажется полной нелепицей – зачем пересчитывать вероятности гипотез, если они и так известны? Но на самом деле разница есть:
– это априорные (оцененные до испытания) вероятности.
– это апостериорные (оцененные после испытания) вероятности тех же гипотез, пересчитанные в связи «со вновь открывшимися обстоятельствами » – с учётом того факта, что событие
достоверно произошло.
Рассмотрим это различие на конкретном примере:
На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии составляет 20%, а во второй – 10%. Наудачу взятое со склада изделие оказалось стандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.
Первая часть решения состоит в использовании формулы полной вероятности. Иными словами, вычисления проводятся в предположении, что испытание ещё не произведено и событие «изделие оказалось стандартным» пока не наступило.
Рассмотрим две гипотезы:
– наудачу взятое изделие будет из 1-й партии;
– наудачу взятое изделие будет из 2-й партии.
Всего: 4000 + 6000 = 10000 изделий на складе. По классическому определению: .
Контроль:
Рассмотрим зависимое событие: – наудачу взятое со склада изделие будет стандартным.
В первой партии 100% – 20% = 80% стандартных изделий, поэтому: – вероятность того, что наудачу взятое на складе изделие будет стандартным при условии, что оно принадлежит 1-й партии.
Аналогично, во второй партии 100% – 10% = 90% стандартных изделий и – вероятность того, что наудачу взятое на складе изделие будет стандартным при условии, что оно принадлежит 2-й партии.
По формуле полной вероятности:
– вероятность того, что наудачу взятое на складе изделие будет стандартным.
Часть вторая. Пусть наудачу взятое со склада изделие оказалось стандартным. Эта фраза прямо прописана в условии, и она констатирует тот факт, что событие произошло.
По формулам Байеса:
а) – вероятность того, что выбранное стандартное изделие принадлежит 1-й партии;
б) – вероятность того, что выбранное стандартное изделие принадлежит 2-й партии.
После переоценки гипотезы , разумеется, по-прежнему образуют полную группу:
(проверка ;-))
Ответ:
Понять смысл переоценки гипотез нам поможет Иван Васильевич, которой снова сменил профессию и стал директором завода. Он знает, что сегодня 1-й цех отгрузил на склад 4000, а 2-й цех – 6000 изделий, и приходит удостовериться в этом. Предположим, вся продукция однотипна и находится в одном контейнере. Естественно, Иван Васильевич предварительно подсчитал, что изделие, которое он сейчас извлечёт для проверки, с вероятностью будет выпущено 1-м цехом и с вероятностью
– вторым. Но после того как выбранное изделие оказывается стандартным, он восклицает: «Какой же классный болт! – его скорее выпустил 2-й цех». Таким образом, вероятность второй гипотезы переоценивается в лучшую сторону
, а вероятность первой гипотезы занижается:
. И эта переоценка небезосновательна – ведь 2-й цех произвёл не только больше изделий, но и работает в 2 раза лучше!
Вы скажете, чистый субъективизм? Отчасти – да, более того, сам Байес интерпретировал апостериорные вероятности как уровень доверия. Однако не всё так просто – в байесовском подходе есть и объективное зерно. Ведь вероятности того, что изделие будет стандартным (0,8 и 0,9 для 1-го и 2-го цехов соответственно) это предварительные (априорные) и средние оценки. Но, выражаясь философски – всё течёт, всё меняется, и вероятности в том числе. Вполне возможно, что на момент исследования более успешный 2-й цех повысил процент выпуска стандартных изделий (и/или 1-й цех снизил), и если проверить бОльшее количество либо все 10 тысяч изделий на складе, то переоцененные значения окажутся гораздо ближе к истине.
Кстати, если Иван Васильевич извлечёт нестандартную деталь, то наоборот – он будет больше «подозревать» 1-й цех и меньше – второй. Предлагаю убедиться в этом самостоятельно:
На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии 20%, во второй – 10%. Наудачу взятое со склада изделие оказалось нестандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.
Условие отличатся двумя буквами, которые я выделил жирным шрифтом. Задачу можно решить с «чистого листа», или воспользоваться результатами предыдущих вычислений. В образце я провёл полное решение, но чтобы не возникло формальной накладки с Задачей №5, событие «наудачу взятое со склада изделие будет нестандартным» обозначено через .
Байесовская схема переоценки вероятностей встречается повсеместно, причём её активно эксплуатируют и различного рода мошенники. Рассмотрим ставшее нарицательным АО на три буквы, которое привлекает вклады населения, якобы куда-то их инвестирует, исправно выплачивает дивиденды и т.д. Что происходит? Проходит день за днём, месяц за месяцем и всё новые и новые факты, донесённые путём рекламы и «сарафанным радио», только повышают уровень доверия к финансовой пирамиде (апостериорная байесовская переоценка в связи с произошедшими событиями!). То есть, в глазах вкладчиков происходит постоянное увеличение вероятности того, что «это серьёзная контора»; при этом вероятность противоположной гипотезы («это очередные кидалы»), само собой, уменьшается и уменьшается. Дальнейшее, думаю, понятно. Примечательно, что заработанная репутация даёт организаторам время успешно скрыться от Ивана Васильевича, который остался не только без партии болтов, но и без штанов.
К не менее любопытным примерам мы вернёмся чуть позже, а пока на очереди, пожалуй, самый распространенный случай с тремя гипотезами:
Электролампы изготавливаются на трех заводах. 1-й завод производит 30% общего количества ламп, 2-й – 55%, а 3-й – остальную часть. Продукция 1-го завода содержит 1% бракованных ламп, 2-го – 1,5%, 3-го – 2%. В магазин поступает продукция всех трех заводов. Купленная лампа оказалась с браком. Какова вероятность того, что она произведена 2-м заводом?
Заметьте, что в задачах на формулы Байеса в условии обязательно фигурирует некое произошедшее событие, в данном случае – покупка лампы.
Событий прибавилось, и решение удобнее оформить в «быстром» стиле.
Алгоритм точно такой же: на первом шаге находим вероятность того, что купленная лампа вообще окажется бракованной.
Пользуясь исходными данными, переводим проценты в вероятности:
– вероятности того, что лампа произведена 1-м, 2-м и 3-м заводами соответственно.
Контроль:
Аналогично: – вероятности изготовления бракованной лампы для соответствующих заводов.
По формуле полной вероятности:
– вероятность того, что купленная лампа окажется с браком.
Шаг второй. Пусть купленная лампа оказалась бракованной (событие произошло)
По формуле Байеса:
– вероятность того, что купленная бракованная лампа изготовлена вторым заводом
Ответ:
Почему изначальная вероятность 2-й гипотезы после переоценки увеличилась
? Ведь второй завод производит средние по качеству лампы (первый – лучше, третий – хуже). Так почему же возросла апостериорная вероятность, что бракованная лампа именно со 2-го завода? Это объясняется уже не «репутацией», а размером. Так как завод №2 выпустил самое большое количество ламп, то на него (по меньшей мере, субъективно) и пеняют: «скорее всего, эта бракованная лампа именно оттуда».
Интересно заметить, что вероятности 1-й и 3-й гипотез, переоценились в ожидаемых направлениях и сравнялись:
Контроль: , что и требовалось проверить.
К слову, о заниженных и завышенных оценках:
В студенческой группе 3 человека имеют высокий уровень подготовки, 19 человек – средний и 3 – низкий. Вероятности успешной сдачи экзамена для данных студентов соответственно равны: 0,95; 0,7 и 0,4. Известно, что некоторый студент сдал экзамен. Какова вероятность того, что:
а) он был подготовлен очень хорошо;
б) был подготовлен средне;
в) был подготовлен плохо.
Проведите вычисления и проанализируйте результаты переоценки гипотез.
Задача приближена к реальности и особенно правдоподобна для группы студентов-заочников, где преподаватель практически не знает способностей того или иного студента. При этом результат может послужить причиной довольно-таки неожиданных последствий (особенно это касается экзаменов в 1-м семестре). Если плохо подготовленному студенту посчастливилось с билетом, то преподаватель с большой вероятностью сочтёт его хорошо успевающим или даже сильным студентом, что принесёт неплохие дивиденды в будущем (естественно, нужно «поднимать планку» и поддерживать свой имидж). Если же студент 7 дней и 7 ночей учил, зубрил, повторял, но ему просто не повезло, то дальнейшие события могут развиваться в самом скверном ключе – с многочисленными пересдачами и балансировкой на грани вылета.
Что и говорить, репутация – это важнейший капитал, не случайно многие корпорации носят имена-фамилии своих отцов-основателей, которые руководили делом 100-200 лет назад и прославились своей безупречной репутацией.
Да, байесовский подход в известной степени субъективен, но… так устроена жизнь!
Закрепим материал заключительным индустриальным примером, в котором я расскажу о до сих пор не встречавшихся технических тонкостях решения:
Три цеха завода производят однотипные детали, которые поступают на сборку в общий контейнер. Известно, что первый цех производит в 2 раза больше деталей, чем второй цех, и в 4 раза больше третьего цеха. В первом цехе брак составляет 12%, во втором – 8%, в третьем – 4%. Для контроля из контейнера берется одна деталь. Какова вероятность того, что она окажется бракованной? Какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех?
Таки Иван Васильевич снова на коне =) Должен же быть у фильма счастливый конец =)
Решение: в отличие от Задач №№5-8 здесь в явном виде задан вопрос, который разрешается с помощью формулы полной вероятности. Но с другой стороны, условие немного «зашифровано», и разгадать этот ребус нам поможет школьный навык составлять простейшие уравнения. За «икс» удобно принять наименьшее значение:
Пусть – доля деталей, выпускаемая третьим цехом.
По условию, первый цех производит в 4 раза больше третьего цеха, поэтому доля 1-го цеха составляет .
Кроме того, первый цех производит изделий в 2 раза больше, чем второй цех, а значит, доля последнего: .
Составим и решим уравнение:
Таким образом: – вероятности того, что извлечённая из контейнера деталь выпущена 1-м, 2-м и 3-м цехами соответственно.
Контроль: . Кроме того, будет не лишним ещё раз посмотреть на фразу «Известно, что первый цех производит изделий в 2 раза больше второго цеха и в 4 раза больше третьего цеха» и убедиться, что полученные значения вероятностей действительно соответствуют этому условию.
За «икс» изначально можно было принять долю 1-го либо долю 2-го цеха – вероятности выйдут такими же. Но, так или иначе, самый трудный участок пройден, и решение входит в накатанную колею:
Из условия находим:
– вероятности изготовления бракованной детали для соответствующих цехов.
По формуле полной вероятности:
– вероятность того, что наугад извлеченная из контейнера деталь окажется нестандартной.
Вопрос второй: какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех? Данный вопрос предполагает, что деталь уже извлечена, и она оказалось бракованной. Переоцениваем гипотезу по формуле Байеса:
– искомая вероятность. Совершенно ожидаемо – ведь третий цех производит не только самую малую долю деталей, но и лидирует по качеству!
В данном случае пришлось упрощать четырёхэтажную дробь, что в задачах на формулы Байеса приходится делать довольно часто. Но для данного урока я как-то так случайно подобрал примеры, в которых многие вычисления можно провести без обыкновенных дробей.
Коль скоро в условии нет пунктов «а» и «бэ», то ответ лучше снабдить текстовыми комментариями:
Ответ: – вероятность того, что извлечённая из контейнера деталь окажется бракованной;
– вероятность того, что извлечённую бракованную деталь выпустил 3-й цех.
Как видите, задачи на формулу полной вероятности и формулы Байеса достаточно простЫ, и, наверное, по этой причине в них так часто пытаются затруднить условие, о чём я уже упоминал в начале статьи.
Дополнительные примеры есть в файле с готовыми решениями на Ф.П.В. и формулы Байеса, кроме того, наверное, найдутся желающие более глубоко ознакомиться с данной темой в других источниках. А тема действительно очень интересная – чего только стОит один парадокс Байеса, который обосновывает тот житейский совет, что если у человека диагностирована редкая болезнь, то ему имеет смысл провести повторное и даже два повторных независимых обследования. Казалось бы, это делают исключительно от отчаяния… – а вот и нет! Но не будем о грустном.
Задача 2: Решение: рассмотрим гипотезы , состоящие в том, что стрелок выберет 1-ю, 2-ю, 3-ю, 4-ю и 5-ю винтовку соответственно. Выбор любой винтовки равновозможен, следовательно:
.
Рассмотрим событие – стрелок попадёт в мишень из наугад взятой винтовки.
По условию: .
По формуле полной вероятности:
Ответ: 0,58
Задача 4: Решение: из условия находим – вероятности того, что двигатель работает на холостом ходу, в нормальном и форсированном режимах соответственно.
По условию – вероятности выхода из строя двигателя для холостого, нормального и форсированного режима соответственно.
По формуле полной вероятности:
– вероятность того, что двигатель выйдет из строя
Ответ: 0,215
Задача 6: Решение: рассмотрим две гипотезы:
– наудачу взятое изделие будет из 1-й партии;
– наудачу взятое изделие принадлежит 2-й партии.
Всего: 4000 + 6000 = 10000 изделий на складе. По классическому определению: .
Рассмотрим событие: – наудачу взятое со склада изделие будет нестандартным.
Из условия находим: – вероятности того, что изделие из соответствующих партий будет нестандартным.
По формуле полной вероятности:
Примечание: данную вероятность легко найти, пользуясь результатом Задачи 5:
Пусть событие произошло (извлечено нестандартное изделие).
По формулам Байеса:
а) – вероятность того, что выбранное нестандартное изделие принадлежит 1-й партии;
б) – вероятность того, что выбранное нестандартное изделие принадлежит 2-й партии.
Ответ:
Задача 8: Решение: всего: 3 + 19 + 3 = 25 студентов в группе. По классическому определению:
– вероятности того, что экзаменующийся студент имеет высокий, средний и низкий уровень подготовки соответственно.
Контроль:
По условию: – вероятности успешной сдачи экзамена для студентов соответствующих уровней подготовки.
По формуле полной вероятности:
– вероятность того, что произвольно выбранный студент сдаст экзамен.
Пусть студент сдал экзамен. По формулам Байеса:
а) – вероятность того, что студент, сдавший экзамен, был подготовлен очень хорошо. Объективная исходная вероятность
оказывается завышенной, поскольку почти всегда некоторым «середнячкам» везёт с вопросами и они отвечают очень сильно, что вызывает ошибочное впечатление безупречной подготовки.
б) – вероятность того, что студент, сдавший экзамен, был подготовлен средне. Исходная вероятность
оказывается чуть завышенной, т.к. студентов со средним уровнем подготовки обычно большинство, кроме того, сюда преподаватель отнесёт неудачно ответивших «отличников», а изредка и плохо успевающего студента, которому крупно повезло с билетом.
в) – вероятность того, что студент, сдавший экзамен, был подготовлен плохо. Исходная вероятность
переоценилась в худшую сторону. Неудивительно.
Проверка:
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
«Всё сдал!» — онлайн-сервис помощи студентам