такое построение перелетных птиц при их длительных миграциях снижает сопротивление воздуха 4 буквы
Такое построение перелетных птиц при их длительных миграциях снижает сопротивление воздуха 4 буквы
Почему птицы при перелете летят V-образным клином? птица клин перелет
Существуют два доказанных и взаимодополняющих объяснения того, почему птицы летят клином. (Перелетные птицы часто выстраиваются и в виде буквы V, и в виде буквы J; исследования показывают, что Jобразный порядок встречается даже чаще, чем правильный Vобразный клин.) Одно объяснение данного явления состоит в том, что птицы, следующие позади, оказываются в выигрыше от поддерживающего их потока воздуха, создаваемого передними птицами. Согласно другому, такое построение обеспечивает птицам должный интервал, направление полета и коммуникацию в группе.
Относительная важность каждого из факторов несомненно меняется — она зависит, например, от сезона или цели данного полета. Вероятно, во время полетов на короткие расстояния за кормом экономия энергии значительно менее важна, чем точная ориентация и предотвращение столкновений в воздухе. С другой стороны, во время миграций на большие расстояния каждому члену стаи очень выгодно найти оптимальное положение, позволяющее сохранять энергию.
Есть две версии. Согласно первой, строй клином имеет аэродинамические преимущества и позволяет птицам тратить меньше сил на полет. Дело в том, что на конце крыльев каждой птицы образуется воздушный вихрь, а это обеспечивает собрату, летящему на полкорпуса позади, дополнительную подъемную силу. Таким образом, сопротивление воздуха снижается для всей стаи, за исключением вожака. Кроме того, птицы получают возможность чаще парить, чем тоже экономят энергию. По второй теории, птицы выстраиваются в клин, чтобы держать друг друга в поле видимости.
Полет клином позволяет птицам расположиться относительно соседа таким образом, чтобы иметь максимальный обзор. А затем пернатые путешественники регулируют свое положение, чтобы попасть в восходящую часть воздушного вихря, образуемого крыльями впереди летящей птицы.
По физике или с юмором? По физике от переднего «мателота» находящегося в голове клина расходится зона возмущений, которая позволяет летящим позади него экономить силы. А с юмором «Что бы в задницу впереди летящему не воткнуться, если он тормознет. «:)
V-образная формация позволяет стае быстрее обмениваться сигналами и держать друг друга в поле видимости. Это сводит к минимуму вероятность потеряться во время долгой миграции.
ИЗ ИНЕТА:1. Подобная формация существенно уменьшает лобовое сопротивление, по сравнению с одиночным полетом.
2. Птицы используют завихрения, срывающиеся с концов крыльев
Меньше сопративление воздуха. нагрузка падает в основном на первого. первая птица самая сильная он же является важаком. может я и ошибаюсь
Что бы вихревые потоки воздуха не колбасили сзади летящую птицу, и ей было бы легче лететь и тратить меньше сил на стабилизацию полета.
Они используют завихрения воздуха, создаваемые крыльями впередилетящей птицы, что уменьшает нагрузки во время долгих перелетов.
Вы пропускали уроки биологии? очень жаль, очень жаль) Достаньте учебник, почитайте) И помните учиться никогда не поздно))
первые летят самые сильные. снижают сопротивление воздуха. молодые последние легче лететь в разряженном воздухе.
для облегчения утомительных дальних перелетов.Во главе летит самый опытный и сильный вожак,сзади наиболее слабые
ребят, об этом в начальных классах говорят.в острии клина станлвится самый сильный, а потом по ниспадающей
думаю, от сильных к слабым, преодолевают так сказать сопротивляемость ветра, хотя могу ошибаться))))
строй клином имеет аэродинамические преимущества и позволяет птицам тратить меньше сил на полет
клином летят только журавли,лебеди и гуси—первая птица разрезает воздух и задним легче лететь
Сопротивление воздуха минимально. ведущий меняется. как велосипедисты или конькобежцы
Как происходит построения стаи перелётных птиц?
Большинство птиц летит стаями, лишь немногие виды — в одиночку. Стайность выгодна для ориентации, уменьшает ущерб, наносимый хищниками, синхронизирует поведение птиц и, возможно, облегчает передачу опыта. Известны разные построения стаи — шеренга, вереница, клин и более сложные — многослойные.
Перелет птиц — наследственно закрепленное явление, возникающее в результате расселения вида на новые территории или изменения условий существования на его родине.
В первых стаях летят наиболее упитанные птицы, которые являются своеобразными разведчиками. Двигаются птицы бросками, перемежая полетные часы с днями отдыха, когда пополняются запасы жира.
Большинство птиц совершает перелёты днём и ночью, лишь немногие виды — только днём.
В длительном перелете у многих птиц участвуют одновременно самцы и самки, что благоприятствует быстрому созданию гнездовых пар и ускоренному проведению воспроизводства в условиях короткого пребывания на родине.
ПОЧЕМУ ПЕРЕЛЕТНЫЕ ПТИЦЫ ЛЕТЯТ VОБРАЗНЫМ КЛИНОМ?
Объяснение данного явления состоит в том, что птицы, следующие позади, оказываются в выигрыше от поддерживающего их потока воздуха, создаваемого передними птицами. Согласно другому, такое построение обеспечивает птицам должный интервал, направление полета и коммуникацию в группе.
Во время полетов на короткие расстояния за кормом экономия энергии значительно менее важна, чем точная ориентация и предотвращение столкновений в воздухе. С другой стороны, во время миграций на большие расстояния каждому члену стаи очень выгодно найти оптимальное положение, позволяющее сохранять энергию.
Вовсе не случайно: почему птицы летают клином
Каждую осень можно наблюдать за пролетающими стаями птиц, которые держат свой путь в теплые края, чтобы весной вернуться обратно. Мелкие птахи покидают гнезда бесформенными стаями. Представители пернатых покрупнее формируют в небе клинообразный строй и держат его на протяжении всего пути. Эта форма имеет ряд преимуществ и делает полет более эффективным.
Потоки воздуха в полете
Не секрет, что в мире человеческих изобретений работают те же законы физики, что и среди представителей мира природы. Прообразом самолета стали птицы, с той лишь разницей, что летательный аппарат крыльями не машет. Зато и от самолета, и от птицы исходят вихревые потоки. Именно их наличие позволяет летчикам экономить топливо в полете, но только в том случае, когда они летят группой. Классический пример – военная эскадрилья.
Птицы в длительных перелетах используют тот же принцип. Располагаясь немного сзади и сбоку от летящего впереди собрата, особь ловит от него восходящие вихревые потоки, образующиеся вокруг конца каждого крыла при взмахе. Эта струя воздуха передается по цепочке всему клину. Таким образом, каждая последующая птица в V-образном строе как бы ложится на воздушную подушку и легче преодолевает сопротивление воздуха. Если бы гуси и утки в своих путешествиях выстраивались строго друг за другом, то им доставались бы не восходящие, а нисходящие вихри. На их погашение уходило бы немало сил и перелет давался бы тяжелее.
Эффективность такого построения была замечена давно. В частности, в циклических видах спорта (велоспорт, бег на коньках, лыжные гонки) состязающиеся используют этот принцип, чтобы легче преодолевать сопротивление воздуха за идущим впереди спортсменом.
Доказательством аэродинамической теории построения птичьего клина служат исследования бразильских ученых Валмира Барбосы и Андре Натана. Они построили компьютерные модели стай из 15-35 птиц и отметили, что стая принимала V-образную форму независимо от того, как изначально взлетали птицы.
Чтобы облегчить перелет для каждого последующего члена стаи, птицы подстраиваются друг под друга и их крылья работают синхронно. Естественно, законы аэродинамики перелетным птицам не знакомы. Ученые не пришли к единому мнению, срабатывают ли в этом случае инстинкты или же пернатые вырабатывают такую тактику, исходя из собственных ощущений.
Следование за лидером
Клиновидное расположение дает большое преимущество для зрительного контроля. Вожак при таком построении находится в поле зрения каждой особи. Хорошо улавливаются все сигналы, идущие и от летящей в центре клина птицы, и от остальных собратьев. Это дает возможность своевременно подстраиваться под каждый предстоящий маневр.
Лидером всегда становится опытная и при этом сильная птица, которая совершала перелёт не единожды и точно знает путь. Это непростая работа: органы чувств и мышцы находятся в наивысшей степени напряжения. Хотя принято читать, что вожак в стае один, во главе клина могут попеременно лететь разные особи. Свое место вожак уступает другой сильной птице из стаи, когда устает. Чтобы отдохнуть и восполнить свои силы, лидер встает в конец клина, где лететь гораздо проще. Такое чередование происходит на протяжении всего пути.
Тех, кто летит впереди и тащит на себе всю стаю, остальные поддерживают криком. Его-то мы и слышим, когда наблюдаем за пролетающими в небе журавлями, утками, гусями и другими представителями пернатых.
Экономия энергии
Перелет в V-образном строю помогает экономить энергию. Это доказывает эксперимент французских орнитологов, которые обучили стаю пеликанов лететь за самолетом. У птиц на спинах были закреплены датчики, которые отслеживали их сердечную деятельность. У тех, кто летел в клиновидном построении, частота сокращений сердца была значительно ниже, чем у особей, летящих в одиночку. Это доказывает, что нагрузка на организм во время перелета клином снижается. Гуси таким образом экономят до 20% энергии.
Орнитологи доказали, что летящие клином птицы способны преодолеть расстояние на 2/3 больше, чем летящие самостоятельно. Благодаря потоку воздуха, создаваемому всей стаей, образуется до 70% мощности полета, а скорость клина достигает 80 км/ч. Птица чувствует утерю поддержки, когда выбивается из строя. Нагрузка резко возрастает, тогда особь возвращается на место. Неудивительно, что птицы способны совершать дальние перелеты, в том числе через огромные водные пространства морей и океанов, где не всегда есть возможность приземлиться на отдых.
Уже упомянутые восходящие вихревые потоки помогают птицам дольше планировать, что экономит силы. Таким образом, долететь до цели может вся стая, а потери в процессе перелета окажутся минимальными. Это важно для сохранения поголовья.
Почему не все птицы летят клином
Этот принцип работает только в случае с крупными представителями орнитофауны. Клином летают гуси, утки, журавли, ибисы, аисты, пеликаны, лебеди. А вот птичкам помельче, с меньшим весом, размером крыльев и тела, приходится сталкиваться с аэродинамикой другого характера. Так что клин в их случае никакого преимущества не несет. Они используют другие виды построения или летят разрозненно. Это доказали результаты эксперимента. Ученые построили модель передвижения клином группы птиц с меньшим и большим весом, нежели у ибисов, и пришли к выводу, что выгода от клинообразного строя возникает только у крупных птиц.
После таких открытий сложно говорить о том, что птицы обделены интеллектом. Хотя, наверное, здесь речь идет об удивительной мудрости природы. Она наделяет свои творения всеми способностями, необходимыми для успешного выживания вида, и клиновидный строй перелетных птиц – яркое тому подтверждение.
Усталость из птиц вышибают. клином!
Почему журавли и некоторые другие крупные птицы во время своих миграций выбирают такую форму построения, как клин? Оказывается, этот строй позволяет им экономить энергию, поскольку птицы, выстроившись клином, так оптимизируют возникающие воздушные потоки, что те не мешают, а помогают им лететь. Но такое возможно только у крупных путешественников.
Когда речь заходит о перелетных птицах, почти сразу же вспоминается летящий по небу журавлиный клин. Впрочем, подобное построение используют не только журавли — многие другие крупные птицы, например, гуси, утки, ибисы также предпочитают путешествовать, построившись в виде клина. Таким образом, можно предположить, что этот строй является достаточно удобным для долгих перелетов. Однако сразу же возникает вопрос: почему?
Почему именно клин
Долгое время существовали две гипотезы, которые объясняли выгоду от подобного построения:
Однако обе этих версии совершенно не объясняют того факта, что клин не является единственной формой построения птичьей стаи. Например:
Почему же в таком случае эти птицы позволяют себе так наплевательский относиться к законам аэродинамики — ведь они могли бы, изменив построение, весьма облегчить себе путешествие? Кроме того, необходимость видеть лидера, указывающего направление движения, есть и у этих пернатых, и, более того, судя по всему им это удается и при других формах построения.
И вот ученые из Международной группы зоологов под руководством Джеймса Ашервуда из Королевского ветеринарного колледжа Лондонского университета (Великобритания) решила разгадать загадку птичьего клина. Для этого исследователи снабдили 14 молодых лесных ибисов (Geronticus eremita) GPS-датчиками, которые фиксировали положение птицы с точностью до 30 см, и акселерометрами, которые регистрировали движения крыльев. После чего прошлой осенью вернули этих выращенных в неволе птиц в естественную среду обитания — как раз накануне их традиционного путешествия из Австрии в Италию (оно прошло под руководством приемных «родителей», то есть людей на параплане). Во время полета эти «родители» получили уникальную возможность исследовать полет ибисов, находясь вблизи самих птиц.
В итоге, когда ибисы благополучно долетели до приготовленного им места зимовки, а ученые проанализировали данные приборов и результаты собственных наблюдений, выяснилось, что аэродинамическая гипотеза была абсолютно корректной. В статье, которая была опубликована в журнале Nature, ученые пишут про то, что ибисы старались лететь сзади и слегка сбоку впереди летящего товарища, чтобы поймать крылом поднимающиеся вверх вихревые потоки, которые тот оставлял позади себя. Если же ведомый оказывался строго позади ведущего, то характер взмахов менялся — так, чтобы минимизировать влияние нисходящих потоков от тела того, кто летел впереди.
Таким образом было выяснено, что построение при полете определяется в основном двумя факторами:
Также орнитологи выяснили, что при этом птицы специально синхронизируют друг с другом движения крыльев — опять же для лучшей настройки на воздушные потоки. В результате получается, что во время полета ибисы как бы тянут друг друга за собой. Без сомнения, подобное дает немалый энергетический выигрыш, хотя сами авторы работы не проводили измерения расходов калорий путешествующих ибисов, ссылаясь на то, что это сильно повредило бы этим редким птицам, которые и так находятся на грани исчезновения.
Клином летают не только птицы
Любопытно, что результаты исследования группы Ашервуда подтверждают одну закономерность, которая давно уже известна всем военным летчикам — если эскадрилья построена клином, то каждый самолет расходует меньше топлива. Прежде ученые считали подобную аналогию неуместной, поскольку воздушные потоки, которые создает самолет, достаточно стабильны (ведь аэропланы крыльями не машут), а вот вихри от крыльев летящей птицы гораздо более непредсказуемы и непостоянны. Но оказалось, что и птицам подобное построение помогает минимизировать энергетические затраты, вызванные воздушными вихрями.
Почему тогда не все птицы летают клином?
Однако все-таки, почему же далеко не все птицы летают клином, если это таит в себе огромную энергетическую выгоду? Построив модель передвижения подобным строем группы птиц с более и менее большим весом, нежели у ибисов, ученые обнаружили, что такая выгода возникает только у крупных птиц — вроде тех же ибисов, аистов, пеликанов, гусей и т. п. А вот их более мелким пернатым сородичам из-за меньшего веса, а также размера тела и крыльев приходится иметь дело с другими аэродинамическими закономерностями, и они уже не могут вот так просто выбрать строй и ритм взмахов крыльями, чтобы ловить одни потоки и избегать другие. Наверное, именно поэтому у перелетных птиц малого размерного класса и наблюдается такое разнообразие построений для путешествий, тогда как почти все крупные птицы летают клином.
Еще много неясного
Итак, почти все загадки, связанные с тем, почему крупные перелетные птицы летают клином, ученые вроде бы разгадали. Впрочем, кое-что пока осталось неясным.
Как видите, вопросов еще достаточно много, и ученые надеются найти на них ответы во время следующей серии экспериментов, которые собираются провести с другими видами птиц, например, с гусями…
Добавьте «Правду.Ру» в свои источники в Яндекс.Новости или News.Google, либо Яндекс.Дзен
Быстрые новости в Telegram-канале Правды.Ру. Не забудьте подписаться, чтоб быть в курсе событий.
Навигаторы в перьях
Многие уверены, что с миграцией птиц наука давно разобралась, что они ориентируются по магнитному полю. Однако недавно авторитетный научный журнал Science признал, что миграция птиц по-прежнему остается для науки загадкой. А ведь ее изучают более 100 лет. Насколько продвинулись ученые в понимании этого феномена?
Никита Чернецов: Чтобы птица могла за тысячи километров вернуться к месту гнездования, ей нужны карта и компас. Это понял в середине 50-х годов прошлого века немецкий ученый Гюнтер Крамер. Вначале должна понять, где находится по отношению к цели, и тут ей нужна карта, а затем уже с помощью компаса выбрать и поддерживать направление движения. Сегодня наука считает, что и компас, и карта могут «работать» на разных физических принципах.
То есть магнитным полем Земли дело не ограничивается?
Никита Чернецов: Сейчас общепризнано, что птицы ориентируются с помощью трех компасных систем: по Солнцу, по звездам и по магнитному полю Земли. Солнечный компас зависит от чувства времени птиц, по сути, от их внутренних часов. А навигации по звездам они обучаются с самого раннего возраста. Вообще умение пользоваться звездным компасом своей сложностью поражает многих специалистов. Оно требует от птиц хорошо развитых когнитивных способностей, гораздо более продвинутых, чем при работе с магнитным компасом. К примеру, птицы должны замечать медленное вращение неба, выделять центр вращения.
А вот магнитный компас, о котором наслышаны многие, на самом деле долгое время не признавался рядом ученых. Ведь он предполагает, что у птиц должна быть особая система, которой нет у человека, так называемая сенсорная модальность. А потому к подобным исследованиям относились так же скептически, как, например, к изучению телепатии у людей. Ситуация изменилась, когда в 70-х годах на научных фактах было доказано существование у птиц магнитного компаса. Считается, что, в отличие от солнечного и звездного, он у птиц является врожденным. Этот компас не действует в полной темноте, работает в синем и зеленом свете и «отключается» в желтом и красном.
А каков механизм? Как птицы воспринимают магнитное поле?
Почему природа столь расточительна? Зачем она подарила птице сразу три компаса? Кстати, какой из них точней?
Никита Чернецов: Над этим вопросом давно бьются ученые. Кстати, над птицами очень сложно ставить эксперименты, которые дали бы однозначные ответы. Сейчас считается, что иерархия различных компасов зависит не только от видов птиц, но они разные даже у популяций одного вида. Некоторые птицы, скажем, «дальнобойщики», регулярно сверяют свой магнитный компас с астрономическим. Для тех, кто мигрирует на короткие расстояния, достаточно одного магнитного компаса. Но если с компасами у науки есть определенная ясность, хотя вопросов еще множество, то ситуация с навигационными картами птиц куда хуже.
То есть остается неясным, как птицы определяют свое местоположение по отношению к цели перелета?
Никита Чернецов: Здесь много гипотез, среди них две наиболее реалистичные. Согласно первой, птицы пользуются картой градиентов магнитного поля, в частности, его напряженности и наклонения. Они меняются от полюса к экватору, а потому могут быть координаторами широты, направления «север-юг». И в экспериментах показано, что пернатые каким-то образом умеют это измерять. Но вот как им определить на карте географическую долготу, координаты «восток-запад»? Даже люди научились определять долготу только в XVIII веке.
А удалось понять механизм, физику явления?
Никита Чернецов: Мы показали, что информация о долготе может поступать в мозг по тройничному нерву, о котором я уже говорил. Возможно, в надклювье есть маленькие частицы магнетита, по сути, это похоже на наш обычный компас. Сейчас данную версию изучаем вместе с учеными питерского Института ядерной физики.
Есть версия, что птицы могут ориентироваться в пространстве по запаху …
Никита Чернецов: Да,Ведь концентрация определенных веществ в атмосфере может меняться, а значит и здесь вероятно есть градиент. В ряде экспериментов птицы с «отключенной» системой обоняния теряли ориентацию. Но у этой версии немало критиков, она требует очень серьезной аргументации.