Как узнают состав планет
Как узнают состав планет
Как ученые узнают химический состав и другие свойства далеких планет?
Очень часто у наших подписчиков возникает логичный вопрос: как ученые узнают все подробности о далеких планетах, если там никогда не было человека или какого-то оборудования? Мы попытаемся в доступной форме объяснить, как это происходит, чтобы вы не думали, будто ученые рассказывают нам сказки.
Итак, существует такой раздел астрофизики, который носит сложное название – астроспектроскопия. Она посвящена исследованиям спектров космических объектов в УФ-, видимой и ближней ИК-областях спектра. То есть, всю информацию о планетах нам рассказывает свет, излучаемый небесными телами.
Фундамент спектроскопии заложил немецкий ученый по имени Иозеф Фраунгофер еще в 1814 году. В ходе дальнейших исследований оказалось, что атомы каждого химического элемента имеют свой цвет и строго определенные резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектре видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и даже его состояния.
Таким образом, каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. Этот метод называется спектральным анализом. Проще говоря: всем известны семь основных цветов, распознаваемых нашим глазом, но ещё есть оттенки в переходе от одного цвета к другому. Свет – это смесь электромагнитных колебаний, и каждое колебание имеет свою длину волны, и, соответственно, свой цвет. Пропуская свет от объекта через призму, его разлагают на спектры. От получившейся картины (спектрограммы) и делают выводы о характеристиках испустившего свет объекта. Пример из жизни — радуга после дождя. Капли дождя разлагают свет, летящий от солнца на семь основных цветов.
В настоящее время все спектры химических элементов определены и сведены в специальные таблицы. Спектральный анализ позволил открыть некоторые неизвестные элементы, например, рубидий и цезий. И эти новые элементы иногда получали названия, соответствующие цветам преобладающих линий спектра: рубидий даёт тёмно-красные линии, а цезий (небесно-голубой) – голубые. Только спектральный анализ помог определить химический состав нашего светила и других звёзд. Использование иных методов для достижения этой цели не представляется возможным. Как оказалось, и на нашей планете, и на далёких звёздах присутствуют одинаковые химические элементы. Астрофизика, используя спектральный анализ, узнаёт характеристики, которыми обладают звёзды, газовые облака и другие объекты. Это химический состав, температура, скорость движения, магнитная индукция, давление. Все эти величины определяются только анализом спектральных линий космических объектов.
masterok
Мастерок.жж.рф
Хочу все знать
Во Вселенной существует огромное количество объектов, добраться до которых не представляется возможным. Даже для того, чтобы долететь до планеты Солнечной системы, требуется потратить много времени и ресурсов. Из-за этого исследование космоса протекает гораздо медленнее. Однако ученые уже давно умеют узнавать химический состав далеких планет, не беря при этом никаких проб.
Как они это делают?
Понять, какие вещества входят в состав планеты, расположенной на большом расстоянии, помогает анализ спектров. Когда солнечный свет падает на небесное тело, он отражается от его поверхности в определенном цвете. Это помогает ученым получить данные с помощью радиотелескопа. Например, когда на Марс падает свет, планета имеет красный цвет.
Можно сделать логичный вывод, что основным компонентом на поверхности является вещество, обладающее таким оттенком. И как показали дальнейшие анализы, на Марсе действительно много оксида железа, который оранжевого цвета. Также анализ спектра помогает определить компоненты атмосферы планеты. Благодаря нему удалось установить, что над поверхностью у небесного тела имеется большое количество углекислоты.
Такой способ изучения помогает не только определить состав поверхности и атмосферы, но и построить теории о том, какие вещества могут находиться в недрах планеты. Некоторые материалы являются продуктом химических реакций и распада определенных элементов, находящихся на глубине.
Космическая химия
Зачем и как ученые исследуют состав далеких звезд и экзопланет
Современным астрономам известно около трех с половиной тысяч экзопланет, которые находятся от нас на расстоянии от четырех до двадцати восьми тысяч световых лет. Некоторые из них очень похожи на Землю. Попасть на какую-нибудь из них в обозримом будущем будет сложно — разве что человечество совершит огромный технологический скачок. Тем не менее, экзопланеты уже сегодня представляют собой огромный интерес с точки зрения астрохимии. Об этом — наш новый материал, написанный в партнерстве с Уральским федеральным университетом.
Основную часть вещества Вселенной (если говорить о барионном веществе) составляет водород — около 75 процентов. На втором месте идет гелий (около 23 процентов). Однако в космосе можно найти самые разнообразные химические элементы и даже сложные молекулярные соединения, включая органические. Изучением процессов образования и взаимодействия химических соединений в космосе занимается астрохимия. Представителям этой специальности очень интересно исследовать экзопланеты, потому что на них могут реализоваться самые разные сценарии, которые приведут к появлению необычных соединений.
Радуга на службе у астрономов
Основным инструментом получения информации о химическом составе отдаленных объектов является спектроскопия. Она использует тот факт, что атомы химических элементов (или молекулы соединений) могут излучать или поглощать свет только на определенных частотах, отвечающих переходам системы между различными уровнями энергии. В результате формируется спектр излучения (или поглощения), по которому можно однозначно определить вещество. Это как отпечатки пальцев, только для атомов.
Наглядным примером разложения света в спектр является радуга. Нам переходы от одного цвета к другому кажутся плавными и непрерывными, а на самом деле некоторых цветов в радуге нет, потому что определенные длины волн поглощаются содержащимися в Солнце водородом и гелием. Кстати, гелий впервые открыли именно по наблюдению за спектром Солнца (поэтому он и называется «гелий», от др.-греч. ἥλιος — «солнце»), а в лаборатории его выделили только через 27 лет. Это был первый успешный пример использования спектроскопии для изучения звезд.
Фраунгоферовы линии поглощения на фоне непрерывного спектра фотосферы Солнца.
В простейшем случае атома водорода спектр излучения представляет собой серию линий, отвечающих переходам между уровнями с различными значениями главного квантового числа n (эта картина хорошо описывается формулой Ридберга). Самой известной и удобной для наблюдений является линия Бальмера Hα, имеющая длину волны 656 нанометров и лежащая в области видимого спектра. Например, на этой линии астрономы наблюдают за далекими галактиками и распознают облака молекулярного газа, которые в большинстве своем как раз состоят из водорода. Следующие серии линий (Пашена, Брэкета, Пфунда и так далее) целиком лежат в инфракрасном диапазоне, а серия Лаймана расположена в области ультрафиолетового излучения. Это несколько усложняет наблюдения.
В то же время у молекул сложных соединений есть другой способ излучать кванты света, в каком-то смысле даже более простой. Связан он с тем, что вращательная энергия молекулы квантуется, что также позволяет им излучать в линиях (кроме того, они могут излучать и непрерывный спектр). Энергия таких квантов света не очень большая, поэтому их частота лежит уже в радиодиапазоне. Один из самых простых вращательных спектров принадлежит молекуле угарного газа CO, по ней астрономы тоже часто распознают облака холодного газа, когда не могут разглядеть в них водород. Методы радиоастрономии позволили найти в молекулярных облаках также метанол, этанол, формальдегид, синильную и муравьиную кислоту, а также другие элементы. Например, именно с помощью радиотелескопа ученые обнаружили алкоголь в хвосте кометы Лавджоя.
Что можно найти в космосе
Проще всего методы спектроскопии применять для изучения химического состава звезд. В этом случае астрономы исследуют спектры поглощения, а не излучения элементов. В самом деле, свет от них легко наблюдать, особенно в видимом диапазоне. Правда, химический состав звезд сам по себе обычно не очень интересен: по большей части они состоят из водорода и гелия с небольшой примесью тяжелых элементов.
Более тяжелые элементы образуются во вспышках сверхновых, и их тоже можно наблюдать. Например, некоторые ученые утверждают, что после недавно зарегистрированного слияния двух нейтронных звезд должны были образоваться огромные количества золота, платины и других элементов из последних строк таблицы Менделеева. Но так или иначе, очень сложные или органические соединения в звездах существовать не могут, поскольку они обязательно распадаются из-за больших температур.
Другое дело — облака холодного межзвездного газа. Они очень сильно разрежены и излучают гораздо слабее, чем звезды, зато сами по себе гораздо больше. И состав у них более интересный. В них можно найти огромное число самых разных молекул — начиная от простых двухатомных и заканчивая относительно сложными многоатомными органическими соединениями. Среди сложных молекул особенно стоит выделить «пребиотические» соединения, например, аминоацетонитрил, который может участвовать в образовании глицина, простейшей аминокислоты. Некоторые ученые предполагают, что в молекулярных облаках может образоваться и рибоза, один из основных кирпичиков органической жизни. Если такие соединения попадут в благоприятные условия, это уже будет ступенькой для возникновения жизни.
Изображение туманности Ориона M42, полученное Коуровской астрономической обсерваторией УрФУ. Красный цвет — это результат рекомбинации в линии излучения Hα на длине волны 656,3 нанометра.
Чуть ближе к планетам
К сожалению, для определения химического состава экзопланет метод спектроскопии применить сложно. Все-таки для этого нужно зарегистрировать свет от них, а звезда, вокруг которой вращается планета, мешает это сделать, поскольку она светит намного ярче. Пытаться наблюдать за такой системой — все равно что смотреть на свет спички на фоне прожектора.
Тем не менее, некоторую информацию об экзопланете можно получить, не измеряя спектр ее излучения напрямую. Хитрость заключается в следующем. Если у планеты есть атмосфера, она должна поглощать часть излучения звезды, причем в разных спектральных диапазонах по-разному. Грубо говоря, на одной длине волны планета будет казаться чуть меньше, а на другой длине — чуть больше. Это позволяет строить предположения о свойствах атмосферы, в частности, о ее химическом составе. Такой способ наблюдений особенно хорошо работает на горячих, близко расположенных к звездам планетах, потому что их радиус проще измерять.
Кроме того, химический состав планеты должен быть связан с составом газопылевого облака, из которого она образовалась. Например, в облаках с большим отношением концентраций атомов углерода к атомам кислорода образующиеся планеты будут состоять преимущественно из карбонатов. С другой стороны, химический состав звезды, образовавшейся из такого облака, также должен отражать его состав. Это позволяет строить некоторые предположения, основываясь на изучении спектра одной только звезды. Так, астрономы из Йельского университета проанализировали данные о химическом составе 850 звезд и обнаружили, что в 60 процентах систем концентрации магния и кремния в звезде указывают на то, что рядом с ней могут находиться каменистые планеты, похожие на Землю. В оставшихся 40 процентах химический состав звезд говорит нам о том, что состав планет вокруг них должен существенно отличаться от земного.
Вообще говоря, в последнее время прямая спектроскопия особенно горячих планет на фоне тусклых звезд все-таки стала возможна благодаря возросшей точности измерительных приборов. В этом случае уже можно искать в их свете следы различных химических элементов и сложных соединений. Например, с помощью ИК-спектрографа CONICA, установленного на телескопе VLT и объединенного с системой адаптивной оптики NAOS, ученым удалось измерить спектр экзопланеты HR 8799 c, которая вращается вокруг белого карлика и разогрета так сильно, что сама излучает свет. В частности, из анализа ее спектра следовало, что в атмосфере планеты содержится меньше, чем ожидалось, метана и угарного газа. Также совсем недавно астрономы измерили спектр другого «горячего юпитера», обнаружив в его атмосфере оксид титана. Тем не менее, непосредственные измерения спектра менее горячих каменистых планет (на которых существование жизни более вероятно) до сих пор представляет большую сложность.
Изображение системы HR 8799. Планета HR 8799 c находится в правом верхнем углу
Jason Wang et al / NASA NExSS, W. M. Keck Observatory
Состав планеты можно также определить косвенно, рассчитав ее плотность. Для этого нужно знать радиус и массу планеты. Массу можно найти, наблюдая за гравитационным взаимодействием планеты со звездой или другими планетами, а радиус оценить по изменению блеска звезды при прохождении планеты по ее диску. Очевидно, газовые планеты должны иметь меньшую плотность по сравнению с каменистыми. Например, средняя плотность Земли равна примерно 5,5 грамма на кубический сантиметр, и для поиска обитаемых планет астрономы ориентируются именно на это значение. В то же время плотность «самого рыхлого горячего юпитера» составляет 0,1 грамма на кубический сантиметр.
«Невозможные» соединения
С другой стороны, экзопланеты можно изучать и вовсе не выходя из лаборатории, как бы странно это ни звучало. Речь идет о моделировании (в основном численном) химических и физических процессов, которые должны на них происходить. Из-за того что условия на экзопланетах могут быть самые экзотические (простите за каламбур), вещества на них могут образоваться тоже самые необычные, «невозможные» в привычных для нас условиях.
Большинство открытых экзопланет относится к «горячим юпитерам» — сильно разогретым из-за небольшого расстояния до звезды газовым гигантам. Конечно, это не обязательно означает, что такие планеты преобладают в звездных системах, просто их легко найти. Температура атмосферы таких гигантов может превышать тысячу градусов по Цельсию, и состоит она в основном из паров силикатов и железа (при такой температуре оно начинает испаряться, но еще не кипит). В то же время, давление внутри этих планет должно достигать огромных значений, при которых водород и другие привычные для нас газы переходят в твердые агрегатные состояния. Эксперименты по моделированию подобных экстремальных условий проводятся давно, однако впервые металлический водород удалось получить только в январе этого года.
С другой стороны, в недрах каменистых планет также могут достигаться большие давления и температуры, а «зоопарк» химических элементов там может быть даже больше. Например, по некоторым оценкам, давление внутри каменистых планет с массами в несколько земных масс может достигать значений до 30 миллионов атмосфер (внутри Земли давление не превышает четырех миллионов атмосфер). С помощью компьютерного моделирования удалось выяснить, что в таких условиях начинают образовываться экзотические соединения магния, кремния и кислорода (которых в составе каменистых планет должно быть много). Например, при давлениях более 20 миллионов атмосфер стабильными становится не только привычный для нас оксид кремния SiO2, но и «невозможные» SiO и SiO3. Также интересно, что в недрах особенно массивных планет (до 20 масс Земли) может образоваться MgSi3O12 — оксид, обладающий свойствами электрического проводника.
Нестандартные условия можно моделировать не только на компьютере, но и в лаборатории, пусть и не для такого большого диапазона давлений и температур. С помощью алмазной наковальни можно получить давления до 10 миллионов атмосфер, как раз соответствующие условиям в недрах планет, а разогреть образец до высоких температур можно лазером. Эксперименты по моделированию таких условий действительно активно проводятся в последнее время. Например, в 2015 году группа ученых, в состав которой входили российские исследователи, экспериментально наблюдали образование пероксида магния MgO2 уже при давлениях около 1,6 тысяч атмосфер и температурах больше двух тысяч градусов Цельсия. Подробно об исследованиях поведения вещества при больших давлениях вы можете прочитать в другом нашем материале.
Рентгеновская спектроскопия образца, состоящего из атомов магния и кислорода, при давлении около десяти тысяч атмосфер и температуре около двух тысяч Кельвин. Пунктиром выделена область с повышенным содержанием кислорода.
S. Lobanov et al / Scientific Reports
В УрФУ есть группа ученых, которые занимаются изучением протопланетного вещества в дальнем космосе и Солнечной системе. Мы попросили ведущего специалиста Коуровской астрономической обсерватории УрФУ Вадима Крушинского более подробно рассказать об изучении экзопланет.
N +1: Зачем мы изучаем экзопланеты?
Вадим Крушинский: Еще 25 лет назад нам было известно о существовании единственной планетной системы — Солнечной. Теперь же мы уверены в том, что планеты есть у огромного числа звезд, возможно, почти у каждой звезды во Вселенной. Прогресс технологий получения и обработки данных привел к тому, что найти свою экзопланету может даже продвинутый любитель астрономии. Открытие очередного «горячего юпитера» — это открытие целой планетной системы, просто мы видим только самую заметную ее часть. Планеты меньшего размера или находящиеся дальше от родительской звезды открываются гораздо реже, это эффект наблюдательной селекции.
Вадим Крушинский в составе группы ученых Уральского федерального университета работает над проектом по исследованию протопланетного вещества в дальнем космосе, Солнечной системе и на Земле.
Это один из шести прорывных научных проектов университета, им занимается стратегическая академическая единица (САЕ) — Институт естественных наук и математики УрФУ — вместе с академическими и индустриальными партнерами из России и других стран. От успеха исследователей зависят позиции университета в российских и международных рейтингах, прежде всего в предметных.
Что же можно узнать об экзопланетах, наблюдая за ними с таких больших расстояний?
Прежде всего нужно определить свойства родительской звезды. Это позволяет вычислить размеры планет, их массу и радиусы орбит. Зная светимость родительской звезды и радиус орбиты, можно оценить температуру поверхности экзопланеты. Кроме того, атмосферы планет имеют разную прозрачность в разных спектральных диапазонах (об этом писал еще Ломоносов). Для наблюдателя это выглядит как разный диаметр планеты при наблюдении в разных фильтрах. Это позволяет обнаружить атмосферу и оценить ее толщину и плотность. Свет родительской звезды, прошедший через атмосферу планеты во время транзита, несет информацию о составе ее атмосферы. А во время вторичного затмения, когда планета прячется за свою звезду, мы можем наблюдать изменения спектра, связанные с отражением от атмосферы и поверхности планеты. Так же, как и у Луны, у экзопланет можно наблюдать фазы. Если изменения блеска системы, вызванные этим эффектом, не постоянны, то это говорит о том, что альбедо планеты (способность отражать свет) меняется. Например, вследствие движения облаков в ее атмосфере.
Свойства экзопланет должны быть связаны со свойствами родительских облаков. Изучая материю на стадии звездообразования, мы вносим вклад в понимание эволюции планетных систем. К сожалению, Земля претерпела значительные изменения в ходе истории, и уже мало напоминает то протопланетное вещество, из которого когда-то родилась. Но совсем рядом с нами летают метеориты и кометы. Некоторые из них даже падают на Землю и попадают в лаборатории. До каких-то из них могут долететь космические аппараты. Прямо перед нами отличный объект исследования! Остается только доказать, что и другие планетные системы эволюционировали так же, как наша.
Можно ли найти жизнь на других планетах?
Для этого нужно обнаружить биомаркеры — проявления жизнедеятельности организмов. Лучшим биомаркером были бы передачи условного «Первого канала», но сойдет и наличие кислорода. Без жизни кислород на Земле был бы связан и исчез из атмосферы за десяток тысяч лет. Обнаружив кислород в атмосферах экзопланет, мы сможем утверждать, что не одиноки во Вселенной. Как его найти, было рассказано выше. Но вот только приборов с достаточной чувствительностью пока нет. Прорыв в этом направлении ожидается после запуска космического телескопа им. Джеймса Вебба (JWST).
Что могут сделать в этой области ученые из России и, в частности, из УрФУ?
Несмотря на то, что в плане изучения экзопланет Россия отстает от остального научного сообщества, у нас есть возможность сократить это отставание. Относительно малобюджетные программы по поиску экзопланетных систем (пилотный проект KPS Коуровской обсерватории УрФУ) позволят сделать первый шаг и помогут в наборе данных для статистического анализа. Высокоточные фотометрические измерения можно проводить и на имеющемся оборудовании, это позволяет искать атмосферы у некоторых экзопланет. Спектральные наблюдения во время транзитов и вторичных затмений относительно доступны для крупнейших телескопов России. Что нужно сделать для старта этих программ — найти заинтересованных людей и оплатить их работу. Немного вложиться в оборудование.
Второе направление — моделирование и интерпретация наблюдаемых эффектов. Это может быть как теоретическая работа, так и экспериментальная — исследование поведения и свойств образцов в условиях космоса и сравнение с наблюдаемыми эффектами. Для этого необходимо создание установки, имитирующей условия космического пространства. В качестве образцов можно использовать метеориты из коллекции УрФУ.
Определение химического состава космических объектов. Спектральный анализ.
Ещё два столетия назад было принято считать, что химических состав планет и звезд навсегда останется для нас загадкой. Ведь в представлении тех лет космические объекты всегда останутся для нас недоступными. Следовательно, мы никогда не получим пробного образца какой-либо звезды или планеты и никогда не узнаем об их составе.
Открытие спектрального анализа полностью опровергло это заблуждение.
Спектральный анализ позволяет дистанционно узнать о многих свойствах далёких объектов. Естественно, без такого метода современная практическая астрономия просто бессмысленна.
Спектр в физике — распределение значений физической величины (обычно энергии, частоты или массы). Обычно под спектром подразумевается электромагнитный спектр — распределение интенсивности электромагнитного излучения по частотам или по длинам волн.
Спектр излучения Солнца.
Темные линии на спектре Солнца заметил ещё в 1802 году изобретатель Волластон. Однако сам первооткрыватель особо не зациклился на этих линиях. Их обширное исследование и классификацию произвел в 1814 году Фраунгофер. В ходе своих опытов он заметил, что своим набором линий обладает Солнце, Сириус, Венера и искусственные источники света. Это означало, что эти линии зависят исключительно от источника света. На них не влияет земная атмосфера или свойства оптического прибора.
Природу этих линий в 1859 открыл немецкий физик Кирхгоф вместе с химиком Робертом Бунзеном. Они установили связь между линиями в спектре Солнца и линиями излучения паров различных веществ. Так они сделали революционное открытие о том, что каждый химический элемент обладает своим набором спектральных линий. Следовательно, по излучению любого объекта можно узнать о его составе. Так был рождён спектральный анализ.
В ходе дальнейших десятилетий благодаря спектральному анализу были открыты многие химические элементы. В их число входит гелий, который был сначала обнаружен на Солнце, за что и получил своё название. Поэтому изначально он считался исключительно солнечным газом, пока через три десятилетия не был обнаружен на Земле.
Чем же объясняется такое поведение спектра? Ответ кроется в квантовой природе излучения. Как известно, при поглощении атомом электромагнитной энергии, его внешний электрон переходит на более высокий энергетический уровень. Аналогично при излучении – на более низкий. Каждый атом имеет свою разницу энергетических уровней. Отсюда и уникальная частота поглощения и излучения для каждого химического элемента.
Именно на этих частотах излучает и испускает газ. В тоже время твёрдые и жидкие тела при нагревании испускают полный спектр, независящий от их химического состава. Поэтому получаемый спектр подразделяется на три типа: непрерывный, линейчатый спектр и спектр поглощения. Соответственно, непрерывный спектр излучают твёрдые и жидкие тела, линейчатый – газы. Спектр поглощения наблюдается тогда, когда непрерывное излучение поглощается газом. Другими словами, разноцветные линии на тёмном фоне линейчатого спектра будут соответствовать тёмным линиям на разноцветном фоне спектра поглощения.
Именно спектр поглощения наблюдается у Солнца, тогда как нагретые газы испускают излучение с линейчатым спектром. Это объясняется тем, что фотосфера Солнца хоть и является газом, она не прозрачна для оптического спектра. Похожая картина наблюдается у других звёзд. Что интересно, во время полного солнечного затмения спектр Солнца становится линейчатым. Ведь в таком случае он исходит от прозрачных внешних слоёв её атмосферы.
Как отмечалось ранее, именно с Солнца началось изучение спектральных линий. Поэтому неудивительно, что исследование спектров сразу же нашло своё применение в астрономии.
Разумеется, первым делом астрономы принялись использовать этот метод для изучения состава звезд и других космических объектов. Так у каждой звезды появился свой спектральный класс, отражающий температуру и состав их атмосферы. Также стали известны параметры атмосферы планет солнечной системы. Астрономы приблизились к пониманию природы газовых туманностей, цефеид, а также комет, колец Сатурна, полярного сияния и многих других небесных объектов и явлений.
Наука | Научпоп
6.1K постов 69.2K подписчиков
Правила сообщества
ВНИМАНИЕ! В связи с новой волной пандемии и шумом вокруг вакцинации агрессивные антивакцинаторы банятся без предупреждения, а их особенно мракобесные комментарии — скрываются.
Основные условия публикации
— Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.
— Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.
— Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.
— Видеоматериалы должны иметь описание.
— Названия должны отражать суть исследования.
— Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.
Не принимаются к публикации
— Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.
— Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.
— Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.
— Оскорбления, выраженные лично пользователю или категории пользователей.
— Попытки использовать сообщество для рекламы.
— Многократные попытки публикации материалов, не удовлетворяющих правилам.
— Нарушение правил сайта в целом.
Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество пикабу.
Насколько спектральный анализ звёзд точен?
Космический корабль НАСА впервые коснулся Солнца
Солнечный зонд Паркера прошел через границу и вошел в атмосферу Солнца, собирая данные, которые помогут ученым лучше понимать звезды.
на картинке: Визуализация солнечного зонда Паркера НАСА, входящего в корону Солнца.
Ученые пришли к выводу, что Марс невозможно превратить во вторую Землю
Американские планетологи озвучили совсем уж неутешительные выводы, опираясь на научные данные, полученные космическими зондами с начала 2000-х годов.
Кажется, человечество слишком рано настроилось на то, чтобы в случае возникновения глобальной катастрофы или перенаселения Земли, или истощения ресурсов можно было бы достаточно легко совершить полет на Марс, где к тому времени были бы созданы все условия для нормального проживания. Кристофер Эдвардс, представляющий Университет в Северной Аризоне, и Брюс Якоски из Колорадского университета опубликовали научную статью, где весьма детально описали причины, по которым Красной планете не суждено стать второй Землей даже в относительно отдаленном будущем.
Как считают ученые, опираясь на данные полученные в ходе работы космических аппаратов MRO, Mars Odyssey и орбитальной обсерватории Maven, планам масштабной колонизации Марса помещает то, что создание плотной атмосферы и теплого климата без больших запасов углекислого газа невозможно. Несмотря на то, что в составе атмосферы планеты 95% занимает углекислый газ, его оболочка весьма тонка, поэтому о создании парникового эффекта говорить не приходится. Водяные пары наблюдаются на Марсе и вовсе в незначительном, остаточном, количестве. А без парникового эффекта проживание на Красной планете практически невозможно, ведь там даже в летние месяцы и в районе экватора температура не поднимается выше нуля градусов.
Исследования показали, что некоторые запасы нужных веществ имеются в грунте и полярных шапках. Но как их оттуда вытащить и вернуть обратно в атмосферу? Для этого необходимы совсем уж новые технологии, а о том, чтобы добыть углерод из глубин планет, не стоит и говорить. Для реализации этих целей нужны технологии, которые не разработаны еще даже в виде проектов и могут появиться лишь спустя множество десятилетий как минимум.
Проблема заключается в том, что без должного уровня углекислого газа атмосферное давление на Марсе не будет аналогичным земному. И вода не сможет существовать на планете в жидком виде. Даже если как-то удастся испарять водяной лед, низкие температуры Марса будут замораживать его на лету. По расчетам исследователей, как озвучил их Кристофер Эдвардс, даже при благоприятном испарении полярных шапок, атмосферное давление Красной планеты приблизится к земным параметрам лишь на 1,2%. Пылевые частицы в грунте, имеющиеся на небольшой глубине, дадут еще 4%. Даже залежи минералов, содержащих углерод, которые еще надо отыскать, при самом благоприятном исходе способны менее чем на 5% продвинуть марсианскую атмосферу к подходящей для жизни людей. Аналогичный результат будет и при использовании клатратов, в которых углерод содержится в кристаллах водяного льда.
Процесс терраформирования Марса невозможен при использовании даже самых современных из имеющихся технологий. Такой неутешительный вывод делают американские планетологи. А ведь когда-то давно на Марсе была весьма плотная атмосфера и существовали океаны. Но ослабевшее магнитное поле и низкий уровень гравитации привели к безвозвратной утере основной массы нужных веществ, а газы атмосферы были снесены порывами солнечных ветров. И даже если человечеству удастся создать искусственное магнитное поле, для того, чтобы газовая оболочка Марса стала хотя бы в два раза толще, должно будет пройти 10 миллионов лет. А у людей нет такого запаса времени. Впрочем, ученые оставляют шанс на покорение Красной планеты. Это можно будет сделать за счет отдельных баз для проживания на поверхности Марса. При этом ученые готовы довести до ума имеющиеся научные наработки, чтобы обеспечить марсианских колонистов и кислородом, и энергией, и даже строительным материалом для возведения различных построек.
Насколько огромна наша Вселенная?
Вселенная – это грандиозная структура, которая состоит из бесконечного множества самых разнообразных объектов. Их разделяют настолько бескрайние космические пространства, что даже свет теряется в их глубинах. Ведь для того, чтобы достигнуть ближайшей звезды, фотону, покинувшему Солнце, потребуется более 4 лет. А преодоление межгалактических расстояний займет миллионы лет. Осознание того, что этот гигантский путь – лишь крошечный шаг в масштабах макрокосмоса, не может не поражать воображение. Так насколько же велика Вселенная на самом деле?
Классическая механика – физик Кирилл Половников
Как Галилей экспериментально подтвердил 1-й закон Ньютона ещё до его формулировки? Как развивалась классическая механика? Какой вклад сделали Галилео Галилей и Исаак Ньютон в её развитие? Как звучат законы классической механики? Рассказывает Кирилл Половников, кандидат физико-математических наук, популяризатор науки, стипендиат фонда «Династия».
Коснуться Солнца: впервые зонд достиг атмосферы нашей звезды
В научной работе, опубликованной 14 декабря 2021 года, ученые сделали вывод, что впервые в истории человечества рукотворный аппарат «пощупал» атмосферу Солнца. По данным учёных, это произошло 28 апреля 2021 г., когда зонд «Паркер» (Parker Solar Probe), запущенный в 2018 г., приблизился к Солнцу на рекордно минимальное расстояние — 7,87 млн км. Данные показывают, что он впервые оказался внутри короны, внешнего слоя атмосферы Солнца. «Паркер» провёл в прямом контакте с солнечной плазмой в общей сложности 5 часов, проведя замеры магнитных полей и частиц. В настоящее время зонд продолжает двигаться по эллиптической орбите, в перигелии всё глубже и глубже погружаясь внутрь внешней атмосферы Солнца.
За время пролёта «Паркер» три раза погружался и вновь выходил за т.н. критическую поверхность Альфвена (Alfven critical surface). Это граница, отделяющая корону (внешний слой атмосферы Солнца) от солнечного ветра. На это границе гравитационное и магнитное поля звезды становятся слишком слабы, чтобы удержать вещество светила и оно отправляется в полет по Солнечной системе. Ранее считалось, что критическая поверхность Альфвена имеет форму шара. Но, видимо, у неё есть выступы и впадины, а её форма и динамика определяются активностью на поверхности Солнца. Учёные также не знали, на каком расстоянии от поверхности Солнца проходит эта граница, предполагая, что она проходит где-то между 10 и 20 радиусами Солнца. Это практически подтвердилось: апрельское прохождение зондом границы атмосферы произошло на расстоянии 13 млн км от поверхности Солнца или 18,8 радиусов.
До конца миссии «Паркер» ещё не раз пройдёт через внешний слой атмосферы Солнца. В следующий раз это случится в январе 2022 г., а к концу миссии в 2025 г. он пролетит на рекордно близком расстоянии в 6,16 млн км (8,86 солнечных радиусов). Корона Солнца тоже «дышит» пропорционально 11-летнему циклу солнечной активности. Сейчас мы находимся вблизи минимума этого цикла, что даст «Паркеру» шансы значительно увеличить общее время пребывания внутри его атмосферы. Учёные примерно с 1950-х гг. бьются над разгадкой причин, почему солнечная корона нагревается более чем до 1 млн градусов, рождая солнечный ветер. И измерения «Паркера» за поверхностью Альфвена может стать самым большим шагом вперед в понимании физики Солнечной активности.
Ранее это сделать было невозможно, просто не было соответствующих технологий защиты космического зонда, чтобы он смог пролететь так близко. При максимальном приближение «Паркера» к Солнцу, оно будет в 475 раз ярче, чем у поверхности Земли. На керамический тепловой щит зонда толщиной 115 мм будет действовать тепловое излучение в 5,5 MВт. В результате его внешняя поверхность нагреется до 1500 °C. Если большинство научных инструментов и оборудования зонда будет прикрыто этим щитом, то единственный внешний датчик (Solar Probe Cup) для измерения заряженных частиц солнечного ветра пришлось сделать из тугоплавких сплавов с термостойкими изоляторами из сапфира. Из-за близости Солнца и сильных электромагнитных помех связываться с Землёй и передавать данные зонд будет только в апогее, — самой дальней от Солнца точке орбиты. В остальное время он действует максимально автономно.
Отметим, что за экстремальные условия мы вознаграждены не только научными данными, но и технологическими рекордами. Во время последнего пролёта мимо Солнца Parker Solar Probe достиг рекордной для рукотворных аппаратов скорости в 170 км/с.
Автор: Антон Мерзляков
Как известно, советское руководство уделяло освоению космоса, военной и тяжелой промышленности особое внимание в сравнении с производством товаров «народного потребления». Но даже при таком раскладе некоторые амбициозные проекты так и не были реализованы. Иногда не хватало финансирования, иногда силы решали перебросить на более, как тогда казалось, перспективные направления. В этом материале мы расскажем, как не дошел до воплощения один из подобных проектов — по разработке и запуску «тяжелого межпланетного корабля».
«Как появилась идея создания межпланетного космического корабля»
Насчет частичного освоения (ну или хотя бы посещения) Марса, четвертой планеты Солнечной системы, человечество размышляет уже не первый десяток лет. Понятно, что подобные планы строили и советские инженеры и конструкторы, особенно после успешных запусков первых в своем роде космических спутников и выхода человека в околоземное пространство. Не стоит забывать и о космической и военной гонке, разворачивавшейся между СССР и США.
В общем, к началу 1960-х годов в Союзе начали всерьез задумываться о создании так называемого тяжелого межпланетного корабля, или ТМК. Как понятно из названия, его основным предназначением виделись долговременные космические экспедиции с высадкой космонавтов на ближайших к Земле планетах — сначала на Марсе, а впоследствии и на Венере.
Амбициозно? Не то слово. Особенно с учетом того, что начать осуществление таких полетов предполагалось уже к середине 1970-х годов (напомним, что на Марс человек не попал и по сей день — экспедиция отправится к планете в лучшем случае в 2025 году силами компании SpaceX Илона Маска).
При этом к концу 1950-х — началу 1960-х вывести в космос межпланетный корабль (если предположить, что его разработка вполне реальна) способны были только сверхтяжелые ракеты. У СССР на тот период была всего одна подобная ракета — Р-7. На такой на орбиту выводили первые спутники и собак Белку и Стрелку, а также «Восток» с Юрием Гагариным.
Так появилась необходимость в разработке более совершенной и мощной ракеты. В книге «Марсианский проект Королева» (есть в свободном доступе) инженер-конструктор Владимир Бугров вспоминает: «На основании постановления правительства от 23 июня 1960 года С. П. Королев вместе с большой кооперацией смежных организаций, привлеченных к этим работам, со своими соратниками В. П. Мишиным и М. К. Тихонравовым приступил к созданию ракеты Н1 и тяжелого межпланетного корабля».
«Как, по задумке исследователей, должна была выглядеть ракета-носитель Н1»
В той же книге одна из глав открывается такими словами, описывающими основные характеристики и компоновку как самого корабля, так и ракеты-носителя: «Облик марсианского пилотируемого ракетно-космического комплекса (МПРКК) окончательно сформировался к 1964 году — лишь на четвертый год проектирования. Он состоял из двух основных частей: марсианского пилотируемого космического комплекса (МПКК) — для полета экипажа к Красной планете, высадки на ее поверхность и возвращения на Землю (иногда тяжелый межпланетный комплекс называли ТМК) — и межпланетного ракетного комплекса (МРК), где в качестве основного элемента использовалась трехступенчатая ракета-носитель Н1, а также имелись технический, стартовый комплексы и другие наземные сооружения».
«Википедия» уточняет: H1 — советская ракета-носитель сверхтяжелого класса, которая должна была оказаться способна выводить на орбиту с Земли 80 тонн груза. Разрабатывалась с начала 1960-х годов в ОКБ-1 (нынешняя РКК «Энергия») под руководством академика Сергея Королева. Сейчас Н1 известна скорее благодаря планам по ее использованию в советской лунно-посадочной пилотируемой программе (последнюю позже также закрыли, так и не достигнув целевого результата). Но в самом начале 1960-х, когда только планировали постройку межпланетного космического корабля, идеи вроде «Быстрее, выше, сильнее» процветали, существенного недостатка в финансировании еще не было, так что выводить ТМК в космическое пространство должна была именно эта сверхтяжелая ракета.
«В чем заключалась разница подходов двух ученых, параллельно работавших над проектом ТМК»
Сам межпланетный космический корабль также предлагался в двух вариантах. Описанный выше проект — авторства Константина Феоктистова, инженера-разработчика и летчика-космонавта. Если коротко, то он был максимально амбициозен и, как выяснилось, существенно опережал не только свое время (проект представляли в 1962—1964 годах), но и наше.
Тяжелый межпланетный корабль в вариации 1963 года. Иллюстрация: «Марсианский проект Королева»
Так, ТМК Феоктистова должен был собираться на околоземной орбите с последующим разгоном к Марсу и предполагал высадку на поверхность планеты двух космонавтов (полная численность экипажа — три человека). Интересно, что двигатели корабля изначально должны были использовать «электрореактивную двигательную установку с ядерным реактором (ЯЭРДУ)».
В книге Бугрова процесс описывается так: «В результате ядерной реакции горючее превращается в высокотемпературный газ, истечение которого из сопла с очень высокой скоростью создает тягу. ЭРДУ создает значительно меньшую по сравнению с ЖРД тягу, но за счет длительного включения, постепенно наращивая скорость и раскручивая комплекс в течение нескольких месяцев на околоземных орбитах, может обеспечить его разгон к Марсу. Таким же образом предполагалось выполнять операции при переходе на орбиту спутника Марса и при старте с нее».
С учетом того, что подобная марсианская экспедиция получилась бы достаточно продолжительной (если отталкиваться от заданной траектории полета с возвращением в район Земли, получается не менее двух-трех лет), проект ТМК Феоктистова предполагал разработку систем жизнеобеспечения, регенерации кислорода и производства еды прямо во время миссии.
Вот некоторые цитаты из книги с описанием нескольких блоков ТМК:
«Главным фактором, определявшим облик и конструкцию, являлась длительная невесомость. Бороться с ней пытались путем создания искусственной тяжести за счет вращения корабля вокруг центра масс».
«Снизить необходимость обеспечения экипажа пищей можно только за счет воспроизводства на борту. Для этого разрабатывался специальный замкнутый биолого-технический комплекс (ЗБТК)».
«В состав ЗБТК также входили хлорельный реактор, ферма с животными — кроликами или курами, от которых впоследствии отказались, — и система утилизации отходов с запасами реактивов».
Вариация ТМК от Глеба Максимова, советского ученого и инженер-конструктора, была более приземленной и не предполагала высадки космонавтов на Марс.
Задумывалось создание «небольшого по массе корабля, рассчитанного на трех членов экипажа, с исследованием на пролетной траектории и без посадки на его поверхность или без выхода на околомарсианскую орбиту с последующим возвращением корабля в район Земли с посадкой отделяемого спускаемого аппарата». В состав такого корабля хотели включить «жилой, рабочий (со шлюзом для выхода в открытый космос), биологический, агрегатный отсеки, спускаемый аппарат и корректирующую двигательную установку».
Интересно, что этот вариант предполагал создание так называемого наземного экспериментального комплекса (НЭК), и эту идею даже реализовали. С этой целью разработали специальный полноразмерный макет ТМК, с чем помогал основанный в 1963 году Институт космической биологии и медицины (впоследствии Институт медико-биологических проблем).
В книге с воспоминаниями Бугрова заявляется, что НЭК «содержал все необходимые системы для имитации условий длительного межпланетного полета (кроме невесомости) и обеспечения жизнедеятельности экипажа в этих условиях». Именно в НЭКе в 1967—1969 годах установили образец тяжелого межпланетного корабля, в составе которого проходили наземную отработку «бортовые системы жизнеобеспечения, радиационной защиты, спасения в аварийных ситуациях, сбора и обработки экологической и медико-биологической информации и многие другие».
«Почему проекты межпланетных космических кораблей так и не были реализованы»
Если коротко, советское руководство решило, что освоение Луны является более перспективным направлением (тем более что США делали в этом значительные успехи, а космическую гонку между двумя сверхдержавами никто не отменял). Вторая причина кроется в смерти Королева, после чего успешно «продавливать» идеи по экспедициям к Марсу или Венере (а в теории и к другим планетам) ни у кого не получалось. Да и сама эта идея к середине 1970-х слегка устарела.
Впрочем, сыграли свою роль и испытательные запуски сверхтяжелой ракеты Н1, произведенные на космодроме Байконур (всего их было четыре): все они оказывались неудачными, сбои происходили еще на этапе работы первой ступени. В общем, активную работу над Н1 полностью свернули уже к 1976 году. По сути, это и поставило крест что на марсианской, что на лунной программе СССР — к тому моменту советская космонавтика переходила к идеям долговременных орбитальных станций.
Автор: Антон Мерзляков
Фото: носят иллюстративный характер
Как найти комету Леонарда на утреннем небе 11-12 декабря 2021 г
11- го декабря 2021 утром в 04.01 мск, 12-го декабря 05.12 мск комета появиться из-за горизонта и наблюдать ее можно будет вплоть до восхода солнца. Мне кажется идеальное время для наблюдений в течении часа с 6-00 по 7-00 по мск. Юго-восточное направление должно быть свободно для наблюдений. С течением времени комета будет стремительно «взлетать» и перемещаться с восточного направления в сторону юго-востока (с 93-96 по 118-123 по азимутальному направлению). Учитывайте это при поисках. В качестве ориентира на небе используйте звезду Арктур в созвездии Волопаса.
Предлагаю захватить с собой как минимум бинокль. Невооруженном глазом комета тоже должна быть видна как туманная звездочка, но не факт, если наблюдаете в городе, учтите фактор засветки. И обязательно оденьтесь потеплее, будет морозно.
ЗЫ Высота, азимут и время кометы C/2021 A1 (Leonard) указаны для широты г.Казань
Приближающийся к нам астероид (4660) Нерей (Nereus): насколько он опасен для Земли
Начнем с истории. Этот астероид был открыт 28 февраля 1982 года американским астрономом Элеанор Френсис «Гло» Хелин из Паломарской обсерватории в США, собственно, через месяц после своего очередного близкого пролета у Земли. Первоначально ему было присвоено обозначение 1982 DB, а потом и номер с собственным именем 4660 Нерей (Nereus) в честь древнегреческого бога водяной стихии и моря.
В своем перигелии Нерей сближается с орбитой Земли на минимальное расстояние около 496 тысяч километров, при этом в афелии Нерей проникает далеко за орбиту Марса. Таким образом, значение перигелия, то есть минимального сближения с Солнцем составит примерно 0,95 астрономической единицы, а афелия, то есть максимального удаления от нашего центрального светила – 2,02 астрономической единицы. Его орбита несколько вытянута, имея эксцентриситет примерно 0,35, но лежит практически в плоскости эклиптики. Угол ее наклона в чуть более 1,4 градуса.
Орбитальный период составляет 663,5 земных суток или 1,82 года. При таком значении астероид огромное количество раз приближался к Земле как до его открытия, так и добрых пару десятков раз после этого.
Да, Нерей классифицируют как астероид, потенциально опасный для нашей планеты, однако ничего экстраординарного до этого не произошло, не произойдет ничего необычного и 11 декабря 2021 года, когда Нерей в очередной раз прилетит на близкое рандеву с Землей. В этот раз нас и астероид будет разделять 3 934 250 километров, что более чем в 10 раз больше удаления от нас Луны.
Что касается размеров Нерея, то тут популярные СМИ изгалялись, как хотели, приводя размерные его параметры и в Эйфелевых башнях, и в футбольных полях, и в Статуях свободы, и даже в железнодорожных составах. Мы обратимся для оценки к старому доброму метру. Учитывая то, что форма Нерея далеко не сфероидальная, а скорее эллипсоидная, или даже яйцевидная, то его размеры, наверное, будет правильным указывать вдоль трех осей координат. А если так, то получаются габариты 510 на 330 на 241метр. При такой неправильности формы астероид не вращается, а скорее кувыркается в пространстве, при этом такой кувырок он делает за 15,1 часа.
В качестве вывода отмечается, что астероид 4660 Нерей или Nereus, невзирая на то, что является потенциально опасным для Земли, пока что, как ни парадоксально звучит, не несет для нее никакой угрозы, поэтому, как и ранее, спим в декабре спокойно и поменьше на сон грядущий читаем и смотрим популярные СМИ.
Ответ на пост «Ученые открыли галактику без темной материи, чье существование не может объяснить теория»
о теории, основанной на свойствах симметрии волновой функции, описывающей систему частиц с отрицательным квадратом массы для объяснения природы темной материи.
Несмотря на их сверхсветовую природу, ансамбль всех частиц системы оказывается в состояниях с нулевым импульсом.
Таким образом, вместо тахионов, с которыми досветовая материя не может взаимодействовать напрямую, можно рассматривать гравитационное взаимодействие досветовой материи с квазичастицами, образованными в среде конденсированного тахионного газа.
Проходя сквозь досветовую материю, эти квазичастицы, образующие темную материю, теряют часть своей энергии с испусканием тормозного излучения в определенном спектре гравитационных волн.
Используя обобщенные преобразования Лоренца, возможно сформулировать лагранжиан кинематически разрешенных процессов рассеяния. Структура этого лагранжиана соответствует формализму Стандартной модели. Исходя из этого лагранжиана, по крайней мере одна из частиц, образующих пару, всегда должна быть досветовой.
Потеря энергии для тахионов означает увеличение скорости, поэтому они совершают переход из конденсированного состояния в ультрарелятивистский тахионный газ. С точки зрения досветовых инерциальных систем отсчета, происходит распад квазичастиц, хотя сами тахионы никуда не распадаются. Поэтому в некоторых очень редких галактиках, где доли темной материи и обычного вещества оказались сопоставимы из-за каких-то далеких событий в прошлом, значительная часть массы темной материи впоследствии могла уйти в тормозное гравитационное излучение, сопровождаемое подобным изменением дисперсии скоростей видимых объектов, образующих звездное скопление, галактику или сверхскопление галактик.
Краткое содержание следующее:
— Строим две простеньких одинаковых ракеты которые запустим в космос на разные орбиты.
— Формируем точку перехвата (Рендеву)
Выглядит достаточно просто, особенно если никогда в KSP не играли (но по факту это не совсем так) 🙂
Давайте по порядку.
Аппарат:
Повторить его максимально просто.
Легкая посадочная рубка (у нее самый большой запас монотоплива из всех простых кабин), над ней гиродин и порт для стыковки средний.
Для обучения может понадобиться много монотоплива, поэтому поставьте несколько баков типа «ПЕЛЬМЕНЬ» или других. Забегая вперед скажу, что на стыковку мне потребовалось где-то 8-12 ед. монотоплива, но возьмите с запасом около 50-100.
Далее вниз ставим стандартный карандаш (бак на 4.5 т. веса) и полукарандаш (2.25 т.) далее вертлявый LVT 45.
В этом случае, разделив парный отстрел боковушек на две ступени (ступень 1 и ступень 0 справа снизу) настройки перекачки топлива сформируются автоматически и ничего не надо будет трогать.
Все двигатели мы запускам разом удерживая адекватный ТВР тягой (1.8). Получится, что сначала все двигатели будут питаться из баков первых двух боковушек, а после отстрела, все двигатели будут есть из вторых двух боковушек, в этом случае, когда все 4 боковушки будут отстреляны, центральный бак останется полным и нетронутым, за счет чего дельта скорости будет хорошо распределена по ступеням. Раньше такие перекачки делались через жёлтые шланги в топливном разделе (можно сделать так и сейчас без включения пропуска ресурсов). С одной пары боковушек шланг из бака ставится в другую пару боковушек, а из второй пары боковушек в центральный бак, и всё будет абсолютно так же.
Касательно размещения РСУ (RSC). Размещать их следует равноудаленно от центра масс того, что вы собираетесь этими движками ориентировать и стыковать. Явно боковушки в космосе уже будет отстреляны, поэтому нам нужен центр масс последней ступени. На первом скриншоте, я пометил примерное место ЦМ красным крестом. Ставим двигатели на как можно более дальнем и одинаковом расстоянии от ЦМ с 4-ой симметрией.
Выводим 1 аппарат на околокруговую орбиту высотой +- 100 км.
2-ой аппарат выводим на орбиту с другой высотой +- 200 км
Получается следующая картинка:
Если мы запустим два аппарата со старта друг за другом к примеру с задержкой в несколько десятков минут и выведем на одинаковые орбиты, они будут вращаться вокруг земли с одинаковой скоростью, но на определенном расстоянии друг от друга (более 100 км) и не приближаться и не отдаляться друг от друга.
В этом случае возникает следующий вопрос.
Почему бы одному аппарату не ускориться и не догнать второй? А потому что сама орбита (эллипс с максимально удаленной от земли точкой (апогей Ап) и максимально близкой к земли точкой (перигей Пе)) напрямую связана со скоростью движения аппарата. Если мы меняем нашу скорость у нас изменяется траектория нашего движения вокруг земли, изменяется и апогей и перигей. Т.е. мы перестанем лететь по той же траектории, что летит второй аппарат из-за чего только улетим дальше от него.
По сути, чтобы построить маневр перехвата, нам нужно дождаться момента нужного оборота вокруг кербина, во время которого расстояние между объектами будет минимальное. Поняв что на текущем обороте вокруг кербина мы будем ближе всего, нам нужно скорректировать орбиту так, чтобы расстояние между орбитами в точке сближение было равно 0. В этом случае, в точке мы действительно встретимся с аппаратом на определенной дистанции, но за счет разных орбит у нас будет очень высокая скорость встречи, от несколько десятков метров в секунду до нескольких сотен.
Забавный факт, когда я начинал играть в KSP я подумал что будет довольно занятной идеей встретиться двум аппаратам если лететь по орбитам в две разные стороны (орбиты с 180 гр. отличия) я довольно серьёзно подошел к делу совместил точку перехвата до 200-300 метров и при встрече офигел, что поскольку аппараты летят в разные стороны, скорость пролёта мимо цели составляла несколько километров в секунду (помахал ручкой).
Прожигаем смотря прямо на карту и видим как узел постепенно приближается к 0. Для стыковки желательный угол не более 0,2 градусов, а лучше 0. Если угол будет больше, все равно можно совместить точки сближения, но скорость встречи мало того, что будет большой, так еще и будет изменяться каждую секунду за счет неточного угла.
Далее мы можем либо просто подождать, как я писал выше круга, на котором мы будем ближе всего, либо заранее прикинуть маневр и дистанции. Точки пересечения будут видны после того как вы спланируете или выполните маневр.
Сам манёвр можно таскать за середину меняя время старта этого маневра (в нашем случае торможения (прожига на ретроград) т.к. мы будем тормозить с аппарата на внешней орбите, а не ускорятся с того что на внутренней. Таская манёвр мы будем видеть, что точки взаиморасположения аппаратов будем удаляться и сближаться, в зависимости от правильной и неправильной стороны в которые мы тянем манёвр.
Два варианта перехвата:
Вариант посложнее: Покрутиться на орбите и поподбирать маневр на ней таская его по времени старта, пока не удастся совместить точку встречи хотя бы в километрах 10-15. (Если всё сделать правильно то можно сразу свести до расстояния менее 1 км.)
За счет этих инструментов и перемоток времени мы подгоняем точки пересечения орбит и делаем маневр (прожиг), чтобы сделать точку пересечения орбит и не смотрим как взаиморасполагаются аппараты.
После этого мы поймем, что каждый круг у нас дистанция между аппаратами в точке встречи будет сокращаться, либо удлиняться (если не повезет), но всё равно через определенное время начнет сокращаться. Просто ждем когда расстояние на встрече будет небольшим. Для кербина на высоте +- 100 км, считаю что 50 км, это максимальное расстояние, на котором можно пробовать делать сближения, иначе можно черпануть за верхние слои атмосферы и разбиться невнимательно выполняя следующие манёвры.
Что случилось если появились ещё и фиолетовые маркеры?
Это значит что вы сделали аппарату такую траекторию, что с орбитой второго аппарата она пересекается не в одной точке, а в двух и маркеры попарного цвета помогут так же сделать сближение в одной или другой точке или подогнать их манёвром. (В случае с двойным пересечением скорость встречи будет скорее всего выше)
Когда у нас есть дистанция менее 50 км между аппаратами всё сводится к простой работе с навиболом (шаром ориентации снизу). Переключаем его с режима орбита в режим ЦЕЛЬ.
В целом о том что творится на навиболе. Благодаря нему мы можем понимать в пространстве куда смотрит нос нашего аппарата, а так же в какую сторону мы летим. Это практически всё что нужно знать чтобы сделать последующий перехват. (Кстати если вдруг не замечали, оранжевая часть поверхности навибола значит что мы смотрим в планету, а синяя от неё)
Далее необходимо понять как это дело туда-сюда движется. Когда мы становимся в определенную точку как на картинке сверху и прожигаем топливо. Значок прогрейда тянется к нашей текущей позиции, а так же в текущей ситуации прогрейд тянется к точке «К ЦЕЛИ» и в этом случае скорость движения к цели увеличивается.
Естественно сделать это на глазок за раз сложно и не выйдет, поэтому следующим этапом, мы просто удерживаем прогрейд в сторону цели и перематываем время пока он не убегает с цели. Как вы можете заметить ускоряться сильно и до бесконечности не стоит, потому что мы просто резко пролетим мимо. Поэтому когда мы окажемся довольно близко (меньше 5 км). Тоже самое действие можно проделывать со значком РЕТРОГРАД и ОТ ЦЕЛИ. Только в этом случае при прожиге РЕТРОГРАД не тянется к нашему положению, а наоборот УБЕГАЕТ от него в другую сторону, а скорость относительно цели уменьшается. (Ретроград необходимо удерживать на значке ОТ ЦЕЛИ).
Данными манипуляциями и перемоткой времени сокращаем дистанцию до 50-100 метров. (Чем ближе находимся к аппарату, тем больше стараемся снижать скорость относительно цели чтобы не пролететь). Когда дистанция станет небольшой просто встаём на ретрогрейд в режиме навибола ЦЕЛЬ и гасим скорость до нуля.
Поздравляю вы только что сделали манёвр перехвата. И кстати говоря, теперь вы можете перехватывать так любое небесное тело (луны, другие планеты).
Погасив же скорость до нуля мы будем спокойненько висеть рядом и практически не двигаться. Однако нужно понимать, что скорость на навиболе отображается с точностью до десятых частей, поэтому при перемотке времени мы всё равно будем слегка двигаться относительно второго аппарата.
Эти кнопки максимально правильно разместят на навиболе взаиморасполагающиеся маркеры К ЦЕЛИ и ОТ ЦЕЛИ, что позволит сразу же всё легко провернуть.
Далее вращаемся так, чтобы портом нацелиться на маркер К ЦЕЛИ (Нацеливаемся на порт)
Переходим на второй аппарат (горячая кнопка быстрого переключения «[» и «]» (на русской раскладке Х и Ъ) и делаем тоже самое (выставляемся на к ЦЕЛИ). Начинаем смотреть К ЦЕЛИ. В этом случае останется просто прожаться немного монотопливными двигателями и сделать небольшую скорость относительно двух целей (0.2-0.3 м/с) и удерживать цель и вектор движения.
Теперь как это сделать. Для начало разберем режим стыковки.
Режим стыковки включается снизу слева на второй значок сверху. После чего выползает вот такой вот экранчик как в левом углу, однако он по сути не сильно помогает.
Обязательно включаем режим стабилизации (гор. клавиша T) без него после прожига РСУ мы будем мотаться как колбаса, если двигатели размещены не равноудаленно от центра масс.
В режиме ВРЩ мы ориентируемся, а в режиме ЛИН делаем смещения чтобы лететь куда надо используя кнопки. Расположение этого креста (WASD как на картинке выше, может быть развернуто относительно продольной оси аппарата (я нарисовал не совсем корректно где D на самом деле будет W и всё остальное так же сместиться на 90 гр, поскольку перед у аппарата где стекло у рубки с обратной стороны от текущего вида), поэтому можно сменить вид за которым летит камера на ФИКСИРОВАННЫЙ и понять всё будет намного проще (смена вида на гор. клавишу V).
По сути нам необходимо в режиме ЛИН включить на R РСУ и целясь в порт на навиболе немного нажать на Shift. Это датс нам небольшой импульс в сторону аппарата. После чего можно вернуться в режим ВРЩ и подгонять своё направление к порту (только желательно в режиме ВРЩ вырубать РСУ на R, чтобы неравномерным прожигом не сместить вектор движения) Если же при полете, мы видим, что наш прогрейд уходит от маркера К ЦЕЛИ, мы в режиме ЛИН с включенным R используем WASD чтобы разместить прогрейд на маркер к ЦЕЛИ. Чтобы легко застыковаться нужно иметь скорость 0.1-0.4 м/с. Когда вы будете рядом с портом, порт магнитом начнет притягиваться, и останется лишь в режиме ВРЩ правильно выставить аппарат, чтобы в точке соединения не было ПЕРЕЛОМА.
Ваша первая стыковка принесет вам невиданное удовольствие и собирать корабли на орбите очень классно. Поэтому обязательно пробуйте и делитесь тем что у Вас получилось в комментах, а так же, не забывайте делать быстрое сохранение когда слетитесь близко, чтобы несколько раз иметь возможность попробовать постыковаться.
В дальнейшем разберу ситуацию как стыковаться не передними, а боковыми или максимально стрёмно расположенными портами и подобные вещи.
Пишите ваши вопросы и комментарии, присылайте что у вас вышло.
С Вами был Finn163. Спасибо за внимание.
Небольшой бонус моя станция из прошлой карьеры на орбите Гилли (спутник Евы) весом в 170 тонн (гнал туда с кербина 4мя или 5ю партиями и стыковался на орбите), а так же подключение топливных стержней для тягача космопоезда одного из модулей станции.
Тайна снежинок (Veritasium)
Какие тайны скрывает процесс образования снежинок, обеспечивающий такое широкое разнообразие форм и сложность узора? Как выращивать снежинки в лабораторных условиях, влияя всего на два параметра: температуру и влажность, чтобы приблизиться к пониманию того, как работает формообразование кристаллов льда?
Почему гелий меняет наш голос, а также что такое инертные газы
На уроках химии мы слышали об инертных газах. Их еще называют благородными, такое красивое название было дано не с проста, ведь все инертные газы, а именно гелий, неон, аргон, криптон, ксенон, а также радиоактивные радон и оганесон обладают очень низкой химической активностью, их соединения с другими веществами существуют лишь в специальных, экстремальных условиях, а значит, эти газы не горят и не поддерживают горение, более того, не имея цвета, запаха и вкуса они не токсичны для человека, их вообще как будто нет, настоящее благородство!)
Но это не совсем так, инертные газы хоть и не отравляют человека, но наркотически действуют на него, однако это не относится к гелию и неону, поскольку их наркотический эффект проявляется при очень повышенном давлении, впрочем, поэтому наркоманы и не дышат шариками с гелием.
Интересным фактом является то, что инертные газы переходят в жидкое состояние при экстремально низких температурах, при этом почти сразу после переходя в твердое состояние. Таким образом разница между температурой кипения и плавления у веществ состовляющих инертные газы 2-5, максимум 10 градусов.
Вообще гелий удивителен. Во Вселенной он второй по распространенности после водорода, но на Земле существует в совсем малых количествах, однако не беспокойтесь, на надувание шариков всем хватит). Из за практически самого малого размера атомов гелия, они почти не сталкиваются друг с другом, когда гелий находится в газообразном состоянии, что делает гелий идеальным газом (идеальный газ это такая теоретическая модель, можете посмотреть о ней в Википедии подробнее).
Еще одна занимательная вещь, что гелий, как и все инертные газы светится при пропускании через него электрического тока. Причем при изменении давления внутри газа, можно менять его цвет. Это связанно с тем, что с увеличением давления, электроны начинают чаще сталкиваться с атомами гелия и общая энергия вещества увеличивается, приводя к изменению цвета. Так гелий может светиться желтым, розовым, оранжевым и зеленым цветами.
Но мы то все знает гелий как веселый газ, смешно изменяющий наш голос. Почему так происходит? Тут нужно разобраться, что вообще такое звук, издаваемый нами при выдохе.
По простому звук есть колебание молекул или других мельчайших частиц среды, улавливаемое нашим ухом. Такой средой является воздух. Когда мы издаем какие либо звуки, наши голосовые связки вибрируют, создавая колебания среды, то есть воздуха. Чем чаще колеблятся связки, тем выше высота звука. Если мы вдохнем вместо воздуха гелий, он станет средой для распространения звука. Но из за гораздо меньшей плотности гелия, он создает меньшее давление на голосовые связки, чем воздух, позволяя им вибрировать быстрее и издавать более тонкий звук.
Так, для понижения голоса можно вдохнуть плотный газ, например фторид серы, он в 5 раз тяжелее воздуха и сильно понижает частоту колебаний голосовых связок, позволяя Вам говорить как Халк:).
Все мы в Матрице
Наблюдателя убери
О современной физике в одном абзаце
Больше околонаучного на канале https://t.me/everScience
Отец и сын
В 1906 году Джозеф Джон Томсон получил Нобелевскую премию по физике за демонстрацию того, что электрон является элементарной частицей, а в 1937 году его сын Джордж Паджет Томсон получил Нобелевскую премию за то, что показал, что электрон может быть волной.
Больше околонаучного на канале https://t.me/everScience.
25 часов в сутки
О ЯДОВИТОЙ ЛАПШЕ НА УШИ
Пришла пора опубликовать здесь свою заметку, писанную в 2010 году или раньше. Потому что актуальности она не утратила.
Илья Ильф при полной поддержке Евгения Петрова не церемонился со скудоумными соотечественниками. Достаточно вспомнить Эллочку Щукину, которую он сравнивал по уровню развития с людоедами племени мумбо-юмбо, или её подругу Фиму Собак, знавшую богатое слово гомосексуализм. Была в записных книжках Ильфа и шутка про человека такого некультурного, что бактерия ему снилась в виде большой собаки.
Это я к тому, что на днях многочисленные интернет-леди сделали перепост одного и того же текста с проникновенным заголовком «Для всех, кто дорожит здоровьем близких. ».
Привожу его полностью, с авторской орфографией и пунктуацией.
1. Никакой пластиковой посуды в микроволновых печках.
2. Никаких пластиковых бутылок с водой в морозильных камерах.
3. Никаких пластиковых упаковок в микроволновых печах.
Эта информация была опубликована в газете, выпускаемой больницей им. Джона Хопкинса (Johns Hopkins Hospital), а также распространена Медицинским центром Walter Reed Army.
Диоксин вызывает раковые заболевания, особенно рак груди.
Диоксин является высоко ядовитым веществом для клеток человеческого организма.
Не замораживайте пластиковые бутылки с водой, так как это приводит к освобождению дииоксина, входящего в состав пластика.
Особое внимание следует уделить недопустимости использования пластиковой посуды для нагревания пищи в микроволновках. Особо это касается жирной пищи. Сочетание жира, высокой температуры и пластика вызывает освобождение диоксина и его проникновения в пищу, а, соответственно, в конечном счете, в клетки человеческого организма.
Вместо пластика, медики рекомендуют для подогрева пищи использовать стеклянную или керамическую посуду. Результат будет тот же, но без диоксина в пище!
Поэтому продукты быстрого приготовления, такие как растворимые супы, каши и т.д. вначале необходимо переложить из пластиковой упаковки в стеклянную посуду, а затем лишь ставить в микроволновку или любую другую печь.
Также недопустимо использование пластиковых крышек, покрытий во время приготовления пищи в микроволновой печи. Это также опасно, как и использовать пластиковую посуду. Высокая температура приводит к тому, что диоксин практически «растаивает и стекает» с такой крышки в пищу. Намного безопаснее использовать бумажные салфетки.
Конец пространной цитаты…
…которая представляет собой классический образец белиберды, рассчитанной на впечатлительного идиота – или идиотку, да простят меня дамы. Потому что образ диоксина, «освободившегося» из пищевой посуды благодаря «сочетанию жира, высокой температуры и пластика», или диоксина, который «растаивает и стекает» в пищу – это штука посильнее «Фауста» Гёте, как сказал бы один Отец Народов. И очень напоминает ту самую бактерию в виде большой собаки.
Фрэнк Заппа язвил: современная журналистика – это когда тот, кто не умеет писать, берёт интервью у того, кто не умеет говорить, для того, кто не умеет читать. Я бы добавил, что зачастую разговор идёт на тему, в которой ни бельмеса не смыслят все трое.
Пожалуй, в процитированной статейке верно лишь одно: диоксины (их много разных) действительно представляют смертельную опасность. Кроме рака, они вызывают многие болезни, а ядовиты примерно в тысячу раз сильнее, чем боевые отравляющие вещества.
Но вот незадача: в состав любого диоксина входит хлор. Которого нет и быть не может в полиэтилене, состоящем только из углерода с водородом – это проходят в средней школе.
Хлор есть в ПВХ – поливинилхлориде, из которого не посуду делают, а лепят, например, дешёвую напольную плитку. Если такую плитку сжигать (не нагревать в микроволновке, а именно сжигать!), в самом деле можно получить диоксин. И если отбеливать хлором целлюлозную пульпу – тоже. И если производить гербициды хлорфенольного ряда… Но какое, интересно, отношение это имеет к кулинарии?
Есть соблазн поглумиться над каждой строчкой безграмотных авторов, у которых одинаково плохо и с русским языком, и с физикой-химией. Им для начала не худо бы усвоить, что термическая деформация – это физический процесс, а горение – химический. При окислении появляются новые вещества, а при плавлении – нет.
Есть соблазн, и всё же я не стану тратить время. Ограничусь предложением «для всех, кто дорожит здоровьем близких»: если выуживаете в сети заметки на жизненно важную тему – не почтите за труд освежить в памяти школьную программу, наведите пару справок, ведь интернет как раз под рукой!
И не спешите верить всему, что публикуют доброхоты-двоечники. Особенно если они пугают вас подслушанным где-то непонятным словечком диоксин и ссылаются на американскую клинику имени Хопкинса. Очень может быть, что это как раз пациенты клиники резвятся в отсутствие санитаров.