Коэффициент пропорциональности G = наз. гравитационной постоянной или постоянной тяготения. Её находят из физического эксперимента с крутильными весами, позволяющими определить силу гравитац. взаимодействия тел известной массы.
Аналогичным путём определяют массы планет, имеющих спутников. Массы планет, не имеющих спутников, определяют по возмущениям, к-рые они оказывают на движение соседних с ними планет. Теория возмущённого движения планет позволила заподозрить существование тогда неизвестных планет Нептуна и Плутона, найти их массы, предсказать их положение на небе.
Для др. типов двойных звезд (затменно-двойных и спектрально-двойных) имеется ряд возможностей приблизительно определить массы звёзд или оценить их нижний предел (т.е. величины, меньше которых не могут быть их массы).
Невидимые (тёмные) спутники, обнаруженные около нек-рых звёзд по наблюдённым колебаниям положения звезды, связанным с её движением около общего центра масс (см. Невидимые спутники звезд ), имеют массы меньше 0,02 . Они, вероятно, не явл. самосветящимися телами и больше похожи на планеты.
Из определений масс звёзд выяснилось, что они заключены примерно в пределах от 0,03 до 60 . Наибольшее количество звёзд имеют массы от 0,3 до 3 . Ср. масса звезд в ближайших окрестностях Солнца , т.е. 10 33 г. Различие в массах звёзд оказывается много меньшим, чем их различие в светимостях (последнее может достигать десятков млн.). Сильно отличаются и радиусы звёзд. Это приводит к разительному различию их ср. плотностей: от до г/см 3 (ср. плотность Солнца 1,4 г/см 3 ).
Массу шарового звёздного скопления далеко не всегда можно оценить путём подсчёта звёзд, т.к. в центральной области большинства таких скоплений изображения отдельных звёзд на фотографиях, полученных с оптимальной экспозицией, сливаются в одно светящееся пятно. Есть методы оценки общей массы всего скопления, основанные на статистич. принципах. Так, напр., применение теоремы о вириале (см. Вириала теорема ) позволяет оценить массу скопления (в ) по радиусу скопления r (пк) и ср. квадратич. отклонению лучевой скорости отдельных звёзд (в км/с) от ср. её значения (т.е. от лучевой скорости скопления как целого): .
Для медленно вращающихся галактик, какими явл., напр., эллиптич. галактики, трудно получить кривые лучевых скоростей, но зато можно по расширению спектр. линии оценить ср. скорость звёзд в системе и, сопоставив её с истинными размерами галактики, определить её массу. Чем больше ср. скорость звёзд, тем больше должна быть масса галактики (при одинаковых размерах). Зависимость между массой, размерами галактики и ср. скоростью звёзд вытекает из условия стационарности системы.
Ещё один способ оценки массы галактик-компонентов двойных систем аналогичен методу оценки масс компонентов спектрально-двойных звёзд (ошибка не превышает 20%). Используют также установленную статистич. зависимость между массой и интегр. светимостью галактик различного типа (своего рода зависимость масса-светимость для галактик). Светимость определяется по видимой интегр. звёздной величине и расстоянию, к-рое оценивается по красному смещению линий в спектре. Ср. масса галактик, входящих в скопление галактик, оценивается по числу галактик скопления и его общей массе, к-рую статистически определяют по дисперсии лучевых скоростей галактик, подобно тому как оценивается общая масса звёздного скопления на основе теоремы о вириале.
Известные ныне массы галактик заключены в пределах от
Лит.: Струве О., Линде Б., Пилланс Э., Элементарная астрономия, пер. с англ., 2 изд., М., 1967; Сагитов М.У., Постоянная тяготения и масса Земли, М., 1969; Климишин И.А., Релятивистская астрономия, М., 1983.
Планета – объект большой, его на весы не поставишь. Как же ученым удалось узнать массу Земли? Как измеряется масса далеких космических объектов?
Существует 2 способа определения массы Земли: с помощью барометра и математических вычислений, или анализа частиц нейтрино.
Барометр и законы Ньютона
Метод, применяемый с XVIII века. Для расчета используются второй закон Ньютона (F=mg) и закон всемирного тяготения (F=G*m*M/R^2).
F – это сила земного притяжения барометра, G – коэффициент гравитационной постоянной, R – радиус планеты, m – вес прибора, M – вес планеты.
Отдельно масса Земли вычисляется по формуле: M = g*R^2/G, где g – это ускорение свободного падения.
Ускорение свободного падения узнали, сбросив барометр с высокой башни и измерив время, которое он пролетел до столкновения с землей. Выяснилось, что за каждую последующую секунду барометр преодолевал почти 9.8 метров. Таким образом, g = 9.8 м/с².
Радиус Земли был известен еще с Античности. Столь сенсационное открытие сделал греческий математик Эратосфен в III веке до н.э.
Ученый подождал день летнего солнцестояния. В это время светило находится в самой высокой точке на небе и в 12 часов отбрасывает наименьшую тень в году.
Математик присмотрелся к обелиску, стоящему неподалеку, измерил отбрасываемую им тень, измерил сам обелиск, высчитал все углы, а потом сделал то же самое в соседнем городе. Расчеты дали ему окружность земли в 38.5 тысяч километров. Современные ученые пересчитали окружность подобным методом и высчитали 40 000 км.
Планета идеальным шаром не является, а потому ее радиус оказался 6371 км.
Труднее всего было найти коэффициент гравитационной постоянной. Для этого исследователи взяли однотонный свинцовый шар и посмотрели, с какой силой он притягивал барометр.
G = 6,67430(15)*10ˆ(-11) Н·м²·кг²
Подставив все эти цифры в уравнение, ученые высчитали, что Земля весит шесть септиллионов кг или 6^24 кг.
Это мельчайшие субатомные частицы, которые испускает Солнце. Они проходят планету насквозь.
Испанские физики поставили лабораторию на Южном полюсе, дождались момента, когда Солнце окажется на Северном полюсе и выловили нейтрино с обратной стороны.
Эксперимент кажется фантастичным, однако измерив скорость частиц, прошедших сквозь Землю, физики нашли плотность планеты и, соответственно, массу.
Как измеряются далекие планеты?
Масса далеких планет вычисляется примерно. Основами для вычислений становятся орбиты планет, орбиты их спутников и гравитационные возмущения между ними.
Масса звезд вычисляется по степени их яркости. Считается, чем ярче небесное тело, тем оно массивнее. По светимости звезды определяется её химический состав, а значит примерная плотность и вес.
Планета – объект большой, его на весы не поставишь. Как же ученым удалось узнать массу Земли? Как измеряется масса далеких космических объектов?
Существует 2 способа определения массы Земли: с помощью барометра и математических вычислений, или анализа частиц нейтрино.
Барометр и законы Ньютона
Метод, применяемый с XVIII века. Для расчета используются второй закон Ньютона (F=mg) и закон всемирного тяготения (F=G*m*M/R^2).
F – это сила земного притяжения барометра, G – коэффициент гравитационной постоянной, R – радиус планеты, m – вес прибора, M – вес планеты.
Отдельно масса Земли вычисляется по формуле: M = g*R^2/G, где g – это ускорение свободного падения.
Ускорение свободного падения узнали, сбросив барометр с высокой башни и измерив время, которое он пролетел до столкновения с землей. Выяснилось, что за каждую последующую секунду барометр преодолевал почти 9.8 метров. Таким образом, g = 9.8 м/с².
Радиус Земли был известен еще с Античности. Столь сенсационное открытие сделал греческий математик Эратосфен в III веке до н.э.
Ученый подождал день летнего солнцестояния. В это время светило находится в самой высокой точке на небе и в 12 часов отбрасывает наименьшую тень в году.
Математик присмотрелся к обелиску, стоящему неподалеку, измерил отбрасываемую им тень, измерил сам обелиск, высчитал все углы, а потом сделал то же самое в соседнем городе. Расчеты дали ему окружность земли в 38.5 тысяч километров. Современные ученые пересчитали окружность подобным методом и высчитали 40 000 км.
Планета идеальным шаром не является, а потому ее радиус оказался 6371 км.
Труднее всего было найти коэффициент гравитационной постоянной. Для этого исследователи взяли однотонный свинцовый шар и посмотрели, с какой силой он притягивал барометр.
G = 6,67430(15)*10ˆ(-11) Н·м²·кг²
Подставив все эти цифры в уравнение, ученые высчитали, что Земля весит шесть септиллионов кг или 6^24 кг.
Это мельчайшие субатомные частицы, которые испускает Солнце. Они проходят планету насквозь.
Испанские физики поставили лабораторию на Южном полюсе, дождались момента, когда Солнце окажется на Северном полюсе и выловили нейтрино с обратной стороны.
Эксперимент кажется фантастичным, однако измерив скорость частиц, прошедших сквозь Землю, физики нашли плотность планеты и, соответственно, массу.
Как измеряются далекие планеты?
Масса далеких планет вычисляется примерно. Основами для вычислений становятся орбиты планет, орбиты их спутников и гравитационные возмущения между ними.
Масса звезд вычисляется по степени их яркости. Считается, чем ярче небесное тело, тем оно массивнее. По светимости звезды определяется её химический состав, а значит примерная плотность и вес.
Планета – объект большой, его на весы не поставишь. Как же ученым удалось узнать массу Земли? Как измеряется масса далеких космических объектов?
Существует 2 способа определения массы Земли: с помощью барометра и математических вычислений, или анализа частиц нейтрино.
Барометр и законы Ньютона
Метод, применяемый с XVIII века. Для расчета используются второй закон Ньютона (F=mg) и закон всемирного тяготения (F=G*m*M/R^2).
F – это сила земного притяжения барометра, G – коэффициент гравитационной постоянной, R – радиус планеты, m – вес прибора, M – вес планеты.
Отдельно масса Земли вычисляется по формуле: M = g*R^2/G, где g – это ускорение свободного падения.
Ускорение свободного падения узнали, сбросив барометр с высокой башни и измерив время, которое он пролетел до столкновения с землей. Выяснилось, что за каждую последующую секунду барометр преодолевал почти 9.8 метров. Таким образом, g = 9.8 м/с².
Радиус Земли был известен еще с Античности. Столь сенсационное открытие сделал греческий математик Эратосфен в III веке до н.э.
Ученый подождал день летнего солнцестояния. В это время светило находится в самой высокой точке на небе и в 12 часов отбрасывает наименьшую тень в году.
Математик присмотрелся к обелиску, стоящему неподалеку, измерил отбрасываемую им тень, измерил сам обелиск, высчитал все углы, а потом сделал то же самое в соседнем городе. Расчеты дали ему окружность земли в 38.5 тысяч километров. Современные ученые пересчитали окружность подобным методом и высчитали 40 000 км.
Планета идеальным шаром не является, а потому ее радиус оказался 6371 км.
Труднее всего было найти коэффициент гравитационной постоянной. Для этого исследователи взяли однотонный свинцовый шар и посмотрели, с какой силой он притягивал барометр.
G = 6,67430(15)*10ˆ(-11) Н·м²·кг²
Подставив все эти цифры в уравнение, ученые высчитали, что Земля весит шесть септиллионов кг или 6^24 кг.
Это мельчайшие субатомные частицы, которые испускает Солнце. Они проходят планету насквозь.
Испанские физики поставили лабораторию на Южном полюсе, дождались момента, когда Солнце окажется на Северном полюсе и выловили нейтрино с обратной стороны.
Эксперимент кажется фантастичным, однако измерив скорость частиц, прошедших сквозь Землю, физики нашли плотность планеты и, соответственно, массу.
Как измеряются далекие планеты?
Масса далеких планет вычисляется примерно. Основами для вычислений становятся орбиты планет, орбиты их спутников и гравитационные возмущения между ними.
Масса звезд вычисляется по степени их яркости. Считается, чем ярче небесное тело, тем оно массивнее. По светимости звезды определяется её химический состав, а значит примерная плотность и вес.
Характеристики планет Солнечной системы были известны еще в средневековье, во времена Кеплера и Галилея. То есть, массу планет приблизительно можно было определить даже простыми методами и инструментами. В современной астрономии есть несколько методов расчета характеристик планет, звезд, скоплений и галактик.
Планеты солнечной системы
Интересный факт: 99,9% всей массы Солнечной системы сосредоточена в самом Солнце. На все планеты вместе взятые приходится не более 0,01%. При этом из этих 0,01%, в свою очередь, 99% массы приходится на газовые гиганты (в том числе 90% только на Юпитер и Сатурн).
Рассчитываем массу Земли и Луны
Чтобы измерить массу планет солнечной системы, проще всего в первую очередь найти значения для Земли. Как мы помним, ускорение свободного падения определяется по формуле F=mg, где m – масса тела, а F – действующая на него сила.
Параллельно вспоминаем универсальный закон всемирного тяготения Ньютона:
Сопоставив эти две формулы, и зная значение гравитационной постоянной 6,67430(15)·10−11 м³/(кг·с²), можно рассчитать массу Земли. Ускорение свободного падения на Земле мы знаем, 9,8 м/с2, радиус планеты тоже. Подставив все данные на выходе получим приблизительно 5,97 х 10²⁴ кг.
Зная массу Земли, мы легко рассчитает параметры по другим объектам Солнечной системы – Луна, планеты, Солнце и так далее. С Луной вообще все довольно просто. Здесь достаточно учесть, что расстояния от центров тел до центра масс соотносятся обратно их массам. Подставив эти цифры для Земли и ее спутника получим массу Луны 7.36 × 10²² килограмма.
Перейдем теперь к методикам измерения массы планет земной группы – Меркурий, Венера, Марс. После чего рассмотрим газовые гиганты, и в самом конце – экзопланеты, звезды и галактики.
Общие методики определения масс планет
Наиболее классический способ, как узнать массу планет – расчет при помощи формул третьего закона Кеплера. Он гласит, что квадраты периодов обращения планет соотносятся так же, как кубы больших полуосей орбит. Ньютон немного уточнил этот закон, внеся в формулу массы небесных тел. На выходе получилась такая формула –
Таким способом можно найти массу всех планет Солнечной системы и самого Солнца.И периоды обращения, и большие полуоси орбит планет Солнечной системы легко измеряются астрономическими методиками, доступными даже без сложных инструментов. А так как массу Земли мы уже рассчитали, можно все цифры подставить в формулу и найти конечный результат.
В отношении же экзопланет и других звезд (но только двойных) в астрономии обычно применяется метод анализа видимых возмущений и колебаний. Он основан на том факте, что все массивные тела “возмущают” орбиты друг друга.
Такими расчетами были открыты планеты Нептун и Плутон, еще до их визуального обнаружения, как говорят “на кончике пера”.
Значения масс планет Солнечной системы
Итак, мы разобрались с общими методиками расчета масс разных небесных тел и посчитали значения для Луны, Земли и Галактики. Давайте теперь составим рейтинг планет нашей системы по их массе.
Возглавляет рейтинг с наибольшей массой планет Солнечной системы – Юпитер, которому не хватило одного порядка чтобы наша система стала двойной. Еще чуть-чуть и у нас могло быть два Солнца, второе вместо Юпитера. Итак, масса этого газового гиганта равняется 1,9 × 10²⁷ кг.
Интересно, что Юпитер – единственная планета нашей системы, центр масс вращения с Солнцем которой расположен вне поверхности звезды. Он отстоит примерно на 7% расстояния между ними от поверхности Солнца.
Вторая по массе планета – Сатурн, его масса 5,7 × 10²⁶ кг. Следующим идет Нептун – 1 × 10²⁶. Четвёртая по массе планета, газовый гигант Уран, масса которого – 8,7 × 10²⁵ кг.
Далее идут планеты земной группы, каменистые тела, в отличие от газовых гигантов с их большим радиусом и относительно малой плотностью.
Самой тяжелой из этой группы является наша планета, ее массу мы уже рассчитали. Далее идет Венера, масса этой планеты равняется 4,9 × 10²⁴ кг. После нее в рейтинге идет Марс, он почти в 10 раз легче – 6,4 × 10²³кг. И замыкает его, как планета самой маленькой массы, Меркурий – 3,3 × 10²³кг. Что интересно, Меркурий даже легче, чем два спутника в Солнечной системе – Ганимед и Каллисто.
Определение масс звезд и галактик
Для того чтобы найти характеристики одинарных звездных систем применяется гравиметрический метод. Его суть в измерении гравитационного красного смещения света звезды. Оно измеряется по формуле ∆V=0,635 M/R, где M и R – масса и радиус звезды, соответственно.
Косвенно можно также вычислить массу звезды по видимому спектру и светимости. Сначала определяется ее класс светимости по диаграмме Герцшпрунга-Рассела, а потом вычисляется зависимость масса/светимость. Такой способ не подходит для белых карликов и нейтронных звезд.
Масса галактик вычисляется в основном по скорости вращения ее звезд (или просто по относительной скорости звезд, если это не спиральная галактика). Все тот же всемирный закон тяготения Ньютона нам гласит, что центробежную силу звезд в галактике можно выразить в формуле:
Только в этот раз в формулу мы подставляем расстояние от Солнца до центра нашей галактики и его массу. Так можно рассчитать массу Млечного Пути, которая равняется 2,2 × 10⁴⁴г.
Не забываем, что эта цифра – это масса галактики без учета звезд, орбиты которых располагаются вне орбиты вращения Солнца. Поэтому для более точных расчетов берутся самые внешние звезды рукавов спиральных галактик.
Для эллиптических галактик способ нахождения массы схож, только там берется зависимость между угловым размером, скоростью движения звезд и общей массой.