Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Если F(x) β€” функция Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° x, Ρ‚ΠΎ ΠΎΠ½Π° называСтся пСриодичСской, Ссли Π΅ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠ΅ число T, Ρ‡Ρ‚ΠΎ для любого x F(x + T) = F(x). Π­Ρ‚ΠΎ число T ΠΈ называСтся ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈ нСсколько. НапримСр, функция F = const для Π»ΡŽΠ±Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π° ΠΏΠΎΡ‚ΠΎΠΌΡƒ любоС число ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΡΡ Π΅Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ.

ΠžΠ±Ρ‹Ρ‡Π½ΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° интСрСсуСт наимСньший Π½Π΅ Ρ€Π°Π²Π½Ρ‹ΠΉ Π½ΡƒΠ»ΡŽ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π•Π³ΠΎ для краткости ΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ просто ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ.

Если F(x) β€” пСриодичСская функция с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T, ΠΈ для Π½Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° производная, Ρ‚ΠΎ эта производная f(x) = Fβ€²(x) β€” Ρ‚ΠΎΠΆΠ΅ пСриодичСская функция с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T. Π’Π΅Π΄ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x Ρ€Π°Π²Π½ΠΎ тангСнсу ΡƒΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π΅Π΅ ΠΏΠ΅Ρ€Π²ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠΉ Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΊ оси абсцисс, Π° ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ пСрвообразная пСриодичСски повторяСтся, Ρ‚ΠΎ Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡ‚ΡŒΡΡ ΠΈ производная. НапримСр, производная ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ sin(x) Ρ€Π°Π²Π½Π° cos(x), ΠΈ ΠΎΠ½Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½Π°. БСря ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΎΡ‚ cos(x), Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ –sin(x). ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ сохраняСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎ.

Однако ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ Π½Π΅ всСгда Π²Π΅Ρ€Π½ΠΎ. Π’Π°ΠΊ, функция f(x) = const пСриодичСская, Π° Π΅Π΅ пСрвообразная F(x) = const*x + C β€” Π½Π΅Ρ‚.

Если F1(x) ΠΈ F2(x) β€” пСриодичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΈ ΠΈΡ… ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Ρ‹ Ρ€Π°Π²Π½Ρ‹ T1 ΠΈ T2 соотвСтствСнно, Ρ‚ΠΎ сумма этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ‚ΠΎΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ пСриодичСской. Однако Π΅Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ простой суммой ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² T1 ΠΈ T2. Если Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ дСлСния T1/T2 β€” Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число, Ρ‚ΠΎ сумма Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½Π°, ΠΈ Π΅Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ€Π°Π²Π΅Π½ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠ΅ΠΌΡƒ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ ΠΊΡ€Π°Ρ‚Π½ΠΎΠΌΡƒ (НОК) ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² T1 ΠΈ T2. НапримСр, Ссли ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΏΠ΅Ρ€Π²ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ 12, Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π²Ρ‚ΠΎΡ€ΠΎΠΉ β€” 15, Ρ‚ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΈΡ… суммы Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ НОК (12, 15) = 60.

Наглядно это ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊ: Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠ΄ΡƒΡ‚ с Ρ€Π°Π·Π½ΠΎΠΉ Β«ΡˆΠΈΡ€ΠΈΠ½ΠΎΠΉ шага», Π½ΠΎ Ссли ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΈΡ… ΡˆΠΈΡ€ΠΈΠ½ Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎ Ρ€Π°Π½ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΠ·Π΄Π½ΠΎ (Π° Ρ‚ΠΎΡ‡Π½Π΅Π΅, ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‡Π΅Ρ€Π΅Π· НОК шагов), ΠΎΠ½ΠΈ снова ΡΡ€Π°Π²Π½ΡΡŽΡ‚ΡΡ, ΠΈ ΠΈΡ… сумма Π½Π°Ρ‡Π½Π΅Ρ‚ Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π£Π·Π½Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘

Π—Π½Π°Π½ΠΈΠ΅ β€” сила. ΠŸΠΎΠ·Π½Π°Π²Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ информация

Как Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π° y=Af(kx+b), Π³Π΄Π΅ A, k ΠΈ b β€” Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ числа? ΠŸΠΎΠΌΠΎΠΆΠ΅Ρ‚ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π³Π΄Π΅ T β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x). Π­Ρ‚Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° позволяСт быстро Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ тригономСтричСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ‚Π°ΠΊΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°. Для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=sin x ΠΈ y=cos x наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ T=2ΠΏ, для y=tg x ΠΈ y=ctg x T=ΠΏ. Рассмотрим Π½Π° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ…, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Π°Π½Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ.

Найти ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π—Π΄Π΅ΡΡŒ А=5, k=3, b=-ΠΏ/8. Для нахоТдСния ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ k β€” число, стоящСС ΠΏΠ΅Ρ€Π΅Π΄ иксом. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ синуса T=2ΠΏ, Ρ‚ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

А=2/7, k=-1/11, b=ΠΏ/5. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ косинуса T=2ΠΏ, Ρ‚ΠΎ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

А=0,3, k=5/9, b=ΠΏ/7. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ тангСнса Ρ€Π°Π²Π΅Π½ ΠΏ, поэтому ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

А=9, k=0,4, b=-7. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ котангСнса Ρ€Π°Π²Π΅Π½ ΠΏ, поэтому ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π΅ΡΡ‚ΡŒ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠ°Ρ функция

ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠ°Ρ функция β€” это функция, значСния ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΊ значСниям Π΅Ρ‘ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ числа T (ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΎΡ‚ нуля).

Ѐункция y=f(x) называСтся пСриодичСской, Ссли сущСствуСт Ρ‚Π°ΠΊΠΎΠ΅ число Tβ‰ 0, Ρ‡Ρ‚ΠΎ для любого x ΠΈΠ· области опрСдСлСния этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ равСнства:

Число T Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x).

Из опрСдСлСния слСдуСт, Ρ‡Ρ‚ΠΎ значСния x-T ΠΈ x+T Ρ‚Π°ΠΊΠΆΠ΅ входят Π² ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x).

Бвойства пСриодичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

1) По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ для любого x ΠΈΠ· области опрСдСлСния y=f(x) Ссли T β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ f(x-T)= f(x)=f(x+T).

2) Для любого x ΠΈΠ· области опрСдСлСния y=f(x) Ссли T1 β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ

Π’Π°ΠΊ ΠΊΠ°ΠΊ T2 Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x), Ρ‚ΠΎ для Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° x-T1

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, число T1+T2 являСтся ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x).

3) Π­Ρ‚ΠΎ свойство нСпосрСдствСнно Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΠ· свойства 2, Ссли T Π²Π·ΡΡ‚ΡŒ Π² качСствС слагаСмого n Ρ€Π°Π·.

4) Если T β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x), Ρ‚ΠΎ для Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° kx+b

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π½Π°Ρ‡ΠΈΡ‚ число T/k β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(kx+b).

5) Π­Ρ‚ΠΈ свойства ΡΠ»Π΅Π΄ΡƒΡŽΡ‚ нСпосрСдствСнно ΠΈΠ· опрСдСлСния.

НапримСр, для суммы f(x) ΠΈ g(x):

Из свойства 3 слСдуСт, Ρ‡Ρ‚ΠΎ каТдая пСриодичСская функция ΠΈΠΌΠ΅Π΅Ρ‚ бСсконСчно ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ².

Если срСди всСх ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=f(x) сущСствуСт наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄, Ρ‚ΠΎ Π΅Π³ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π³Π»Π°Π²Π½Ρ‹ΠΌ (ΠΈΠ»ΠΈ основным) ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ пСриодичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

1) ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ для любого x Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ равСнства

Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=sin x ΠΈ y=cos x ΡΠ²Π»ΡΡŽΡ‚ΡΡ пСриодичСскими с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=2Ο€.

2) Π’Π°ΠΊ ΠΊΠ°ΠΊ для любого x ΠΈΠ· области опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=tg x выполняСтся равСнство

tg (x-Ο€)=tg x =tg (x-Ο€), Ρ‚ΠΎ y=tg x β€” пСриодичСская функция с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=Ο€.

Аналогично, y=ctg x β€” пСриодичСская функция с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=Ο€.

3) Π’Π°ΠΊ ΠΊΠ°ΠΊ для любого Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа x ΠΈ любого Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ числа k выполняСтся равСнство D(x+k)=D(x), Ρ‚ΠΎ функция Π”ΠΈΡ€ΠΈΡ…Π»Π΅ D(x) β€” пСриодичСская с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=k, Π³Π΄Π΅ k∈Q, kβ‰ 0.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ k β€” любоС Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ число, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΅Π³ΠΎ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ наимСньшСС ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, функция Π”ΠΈΡ€ΠΈΡ…Π»Π΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°.

4) Рассмотрим частный случай Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=b, b β€” Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число (b∈R). Π­Ρ‚Π° функция ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π½Π° мноТСствС Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл ΠΈ ΠΏΡ€ΠΈ Π»ΡŽΠ±Ρ‹Ρ… значСниях Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ СдинствСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ y=b, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ для любого Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа m (m∈R), y(x)=y(x+m)=b.

Π—Π½Π°Ρ‡ΠΈΡ‚ y=b β€” пСриодичСская функция с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=m, Π³Π΄Π΅ m∈R, mβ‰ 0.

Π’Π°ΠΊ ΠΊΠ°ΠΊ m β€” любоС Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число, ΠΎΠ½ΠΎ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ наимСньшСго ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ значСния. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ функция y=b Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°.

5) Π’Π°ΠΊ ΠΊΠ°ΠΊ для любого Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ x ΠΈ любого Ρ†Π΅Π»ΠΎΠ³ΠΎ k выполняСтся равСнство =, Ρ‚ΠΎ функция Π΄Ρ€ΠΎΠ±Π½ΠΎΠΉ части числа y= β€” пСриодичСская с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ T=k, Π³Π΄Π΅ kβˆˆΞ–, kβ‰ 0.

НаимСньшим ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ†Π΅Π»Ρ‹ΠΌ числом являСтся Π΅Π΄ΠΈΠ½ΠΈΡ†Π°. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, T=1 β€” Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=.

Π“Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=sin x ΠΈ y=cos x T=2Ο€.

Π“Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=tg x ΠΈ y=ctg x T=Ο€.

Если T β€” ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=sin x, Ρ‚ΠΎ sin (x-2Ο€)=sin x = sin (x-2Ο€) для любого x.

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ΠΎ Π΅ΡΡ‚ΡŒ любой ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=sin x ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ 2Ο€n, n∈Z.

НаимСньшСС ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΠΏΡ€ΠΈ n=1 ΠΈ ΠΎΠ½ΠΎ Ρ€Π°Π²Π½ΠΎ T=2Ο€.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, 2Ο€ β€” Π³Π»Π°Π²Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=sin x.

Аналогично Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ утвСрТдСния ΠΎ Π³Π»Π°Π²Π½ΠΎΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=cos x, y=tg x ΠΈ y=ctg x.

Из 4-Π³ΠΎ свойства пСриодичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ нСпосрСдствСнно слСдуСт, Ρ‡Ρ‚ΠΎ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=sin (kx+b) ΠΈ y=cos (kx+b) (kβ‰ 0) наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π° для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=tg (kx+b) ΠΈ y=ctg (kx+b) (kβ‰ 0) наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π“Ρ€Π°Ρ„ΠΈΠΊ пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ повторяСтся Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ T (Π½Π° оси Ox).

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π”Π°Π½Π° Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°

ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π΄Π»ΠΈΠ½ΠΎΠΉ T.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, выполняСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ пСрСнос этой части Π³Ρ€Π°Ρ„ΠΈΠΊΠ° вдоль оси Ox Π½Π° Β±T, Β±2T,… :

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘ пСриодичСскими функциями ΠΌΡ‹ встрСчаСмся Π² школьном курсС Π°Π»Π³Π΅Π±Ρ€Ρ‹. Π­Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, всС значСния ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‚ΡΡ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄. Как Π±ΡƒΠ΄Ρ‚ΠΎ ΠΌΡ‹ ΠΊΠΎΠΏΠΈΡ€ΡƒΠ΅ΠΌ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° β€” ΠΈ повторяСм этот ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ Π½Π° всСй области опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. НапримСр, β€” пСриодичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π”Π°Π΄ΠΈΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

НапримСр, β€” пСриодичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄

Но Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ пСриодичСскими. Если Π²Ρ‹ ΡƒΡ‡ΠΈΡ‚Π΅ΡΡŒ Π² матклассС ΠΈΠ»ΠΈ Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΌ курсС Π²ΡƒΠ·Π° β€” Π²Π°ΠΌ ΠΌΠΎΠ³ΡƒΡ‚ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒΡΡ Π²ΠΎΡ‚ Ρ‚Π°ΠΊΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ:

1. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠ°Ρ функция ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° для всСх Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл. Π•Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ€Π°Π²Π΅Π½ Π΄Π²ΡƒΠΌ ΠΈ НайдитС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ выраТСния

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π²ΠΎΡ‚ Ρ‚Π°ΠΊ:

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как Π²Π΅Π΄Π΅Ρ‚ сСбя функция Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… β€” ΠΌΡ‹ Π½Π΅ Π·Π½Π°Π΅ΠΌ. Но Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ состоит ΠΈΠ· ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΡ…ΡΡ элСмСнтов Π΄Π»ΠΈΠ½ΠΎΠΉ 2, Ρ‡Ρ‚ΠΎ ΠΈ нарисовано.

2. Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ‡Π΅Ρ‚Π½ΠΎΠΉ пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ совпадаСт с Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ ΠΎΡ‚ 0 Π΄ΠΎ 1; ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ 2. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ f(4 ).

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ функция чСтная, Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ симмСтричСн ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΡ€ΠΈ ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΡƒΡŽ части Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΎΡ‚ 0 Π΄ΠΎ 1.

ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ 2. ΠŸΠΎΠ²Ρ‚ΠΎΡ€ΠΈΠΌ пСриодичСски участок Π΄Π»ΠΈΠ½Ρ‹ 2, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΡƒΠΆΠ΅ построСн.

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

3. НайдитС наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НаимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ получаСтся ΠΈΠ· Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сТатиСм Π² 3 Ρ€Π°Π·Π° ΠΏΠΎ оси X (смотри Ρ‚Π΅ΠΌΡƒ Β«ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ).

РассуТдая Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ, Ρ‡Ρ‚ΠΎ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ€Π°Π²Π΅Π½ На ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ укладываСтся Ρ€ΠΎΠ²Π½ΠΎ 5 ΠΏΠΎΠ»Π½Ρ‹Ρ… Π²ΠΎΠ»Π½ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

4. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ 12, Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ 8. НайдитС наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НаимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ суммы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ€Π°Π²Π΅Π½ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠ΅ΠΌΡƒ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ ΠΊΡ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² слагаСмых.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ИсслСдованиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ

Π Π°Π·Π΄Π΅Π»Ρ‹: ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°

ЦСль: ΠΎΠ±ΠΎΠ±Ρ‰ΠΈΡ‚ΡŒ ΠΈ ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ знания учащихся ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ β€œΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ функций”; Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π°Π²Ρ‹ΠΊΠΈ примСнСния свойств пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, нахоТдСния наимСньшСго ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² пСриодичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ; ΡΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ интСрСса ΠΊ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ; Π²ΠΎΡΠΏΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ, Π°ΠΊΠΊΡƒΡ€Π°Ρ‚Π½ΠΎΡΡ‚ΡŒ.

ΠžΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅: ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€, ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΌΠ΅Π΄ΠΈΠΉΠ½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΎΡ€, ΠΊΠ°Ρ€Ρ‚ΠΎΡ‡ΠΊΠΈ с заданиями, слайды, часы, Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ ΠΎΡ€Π½Π°ΠΌΠ΅Π½Ρ‚ΠΎΠ², элСмСнты Π½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ промысла

β€œΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° – это Ρ‚ΠΎ, посрСдством Ρ‡Π΅Π³ΠΎ люди ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‚ ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΎΠΉ ΠΈ собой”
А.Н. ΠšΠΎΠ»ΠΌΠΎΠ³ΠΎΡ€ΠΎΠ²

I. ΠžΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ этап.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° готовности учащихся ΠΊ ΡƒΡ€ΠΎΠΊΡƒ. Π‘ΠΎΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΡ‹ ΠΈ Π·Π°Π΄Π°Ρ‡ ΡƒΡ€ΠΎΠΊΠ°.

II. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° домашнСго задания.

Π”ΠΎΠΌΠ°ΡˆΠ½Π΅Π΅ Π·Π°Π΄Π°Π½ΠΈΠ΅ провСряСм ΠΏΠΎ ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ слоТныС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ обсуТдаСм.

III. ΠžΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ ΠΈ систСматизация Π·Π½Π°Π½ΠΈΠΉ.

1. Устная Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π°.

1) Π‘Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
2) НазовитС наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=sin(x), y=cos(x)
3). НазовитС наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y=tg(x), y=ctg(x)
4) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΡ€ΡƒΠ³Π° Π²Π΅Ρ€Π½ΠΎΡΡ‚ΡŒ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ:

y=sin(x) = sin(x+360ΒΊ)
y=cos(x) = cos(x+360ΒΊ)
y=tg(x) = tg(x+18 0ΒΊ)
y=ctg(x) = ctg(x+180ΒΊ)

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

tg(x+ Ο€ n)=tgx, n € Z
ctg(x+ Ο€ n)=ctgx, n € Z

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

sin(x+2 Ο€ n)=sinx, n € Z
cos(x+2 Ο€ n)=cosx, n € Z

5) Как ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ?

1) Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ

a) sin( 740ΒΊ ) = sin(2 0ΒΊ )
b) cos( 54ΒΊ ) = cos(-1026ΒΊ)
c) sin(-1000ΒΊ) = sin( 80ΒΊ )

2. Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» Π² 540ΒΊ являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y= cos(2x)

3. Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» Π² 360ΒΊ являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=tg(x)

a) tg 375ΒΊ
b) ctg 530ΒΊ
c) sin 1268ΒΊ
d) cos (-7363ΒΊ)

5. Π“Π΄Π΅ Π²Ρ‹ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°Π»ΠΈΡΡŒ со словами ΠŸΠ•Π Π˜ΠžΠ”, ΠŸΠ•Π Π˜ΠžΠ”Π˜Π§ΠΠžΠ‘Π’Π¬?

ΠžΡ‚Π²Π΅Ρ‚Ρ‹ учащихся: ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ Π² ΠΌΡƒΠ·Ρ‹ΠΊΠ΅ – построСниС, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΈΠ»ΠΈ ΠΌΠ΅Π½Π΅Π΅ Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½Π½Π°Ρ ΠΌΡƒΠ·Ρ‹ΠΊΠ°Π»ΡŒΠ½Π°Ρ ΠΌΡ‹ΡΠ»ΡŒ. ГСологичСский ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ – Ρ‡Π°ΡΡ‚ΡŒ эры ΠΈ раздСляСтся Π½Π° эпохи с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ ΠΎΡ‚ 35 Π΄ΠΎ 90 ΠΌΠ»Π½. Π»Π΅Ρ‚.

ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ полураспада Ρ€Π°Π΄ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ вСщСства. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π΄Ρ€ΠΎΠ±ΡŒ. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠ°Ρ ΠΏΠ΅Ρ‡Π°Ρ‚ΡŒ – ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Π΅ издания, ΠΏΠΎΡΠ²Π»ΡΡŽΡ‰ΠΈΠ΅ΡΡ Π² строго ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ сроки. ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠ°Ρ систСма МСндСлССва.

6. На рисунках ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ части Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² пСриодичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

7. Π“Π΄Π΅ Π² ΠΆΠΈΠ·Π½ΠΈ Π²Ρ‹ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°Π»ΠΈΡΡŒ с построСниСм ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‰ΠΈΡ…ΡΡ элСмСнтов?

ΠžΡ‚Π²Π΅Ρ‚ учащихся: Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΎΡ€Π½Π°ΠΌΠ΅Π½Ρ‚ΠΎΠ², Π½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ΅ творчСство.

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

IV. ΠšΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡.

(РСшСниС Π·Π°Π΄Π°Ρ‡ Π½Π° слайдах.)

Рассмотрим ΠΎΠ΄ΠΈΠ½ ΠΈΠ· способов исслСдования Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ.

Π—Π°Π΄Π°Ρ‡Π° 1. НайдитС наимСньший ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x)=1+35>

РСшСниС: ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π’-ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’ΠΎΠ³Π΄Π° f(x+T)=f(x) для всСх x € D(f), Ρ‚.Π΅.

ПолоТим x=-0,25 ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ

ΠœΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ всС ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Ρ‹ рассматриваСмой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ссли ΠΎΠ½ΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚) находятся срСди Ρ†Π΅Π»Ρ‹Ρ… чисСл. Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ срСди этих чисСл наимСньшСС ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число. Π­Ρ‚ΠΎ 1. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΠΌ, Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π»ΠΈ ΠΎΠ½ΠΎ ΠΈ Π½Π° самом Π΄Π΅Π»Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ 1.

Π’Π°ΠΊ ΠΊΠ°ΠΊ=ΠΏΡ€ΠΈ любом Π’, Ρ‚ΠΎ f(x+1)=3<(x+0.25)+1>+1=3+1=f(x), Ρ‚.Π΅. 1 – ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ f. Π’Π°ΠΊ ΠΊΠ°ΠΊ 1 – наимСньшСС ΠΈΠ· всСх Ρ†Π΅Π»Ρ‹Ρ… ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл, Ρ‚ΠΎ T=1.

Π—Π°Π΄Π°Ρ‡Π° 2. ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ функция f(x)=cos 2 (x) пСриодичСская ΠΈ Π½Π°ΠΉΡ‚ΠΈ Π΅Ρ‘ основной ΠΏΠ΅Ρ€ΠΈΠΎΠ΄.

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π°Π΄Π°Ρ‡Π° 3. НайдитС основной ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Допустим Π’-ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎΠ³Π΄Π° для любого Ρ… справСдливо ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈsin(1,5Π’)+5cos(0,75Π’)=5

cosКак ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ=1

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ=2 Ο€ n, n € Z

T=Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, n € Z

Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ ΠΈΠ· всСх β€œΠΏΠΎΠ΄ΠΎΠ·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…β€ Π½Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ чисСл Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΠΌ, являСтся Π»ΠΈ ΠΎΠ½ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ для f. Π­Ρ‚ΠΎ число Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

f(x+Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ)=sin(1,5x+4 Ο€ )+5cos(0,75x+2 Ο€ )= sin(1,5x)+5cos(0,75x)=f(x)

Π—Π½Π°Ρ‡ΠΈΡ‚ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ функции– основной ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f.

Π—Π°Π΄Π°Ρ‡Π° 4. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΠΌ являСтся Π»ΠΈ пСриодичСской функция f(x)=sin(x)

ΠŸΡƒΡΡ‚ΡŒ Π’ – ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f. Π’ΠΎΠ³Π΄Π° для любого Ρ…

Если Ρ…=0, Ρ‚ΠΎ sin|Π’|=sin0, sin|Π’|=0 Π’= Ο€ n, n € Z.

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ. Π§Ρ‚ΠΎ ΠΏΡ€ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ n число Ο€ n являСтся ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ

рассматриваСмой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ο€ n>0. Π’ΠΎΠ³Π΄Π° sin| Ο€ n+x|=sin|x|

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΡ‚ΡΡŽΠ΄Π° Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ n Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΈ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ ΠΈ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌ числом, Π° это Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ данная функция Π½Π΅ являСтся пСриодичСской.

Π—Π°Π΄Π°Ρ‡Π° 5. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, являСтся Π»ΠΈ пСриодичСской функция

f(x)= Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡƒΡΡ‚ΡŒ Π’ – ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ f, Ρ‚ΠΎΠ³Π΄Π°

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΎΡ‚ΡΡŽΠ΄Π° sinT=0, Π’= Ο€ n, n € Z. Допустим, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ n число Ο€ n Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ являСтся ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’ΠΎΠ³Π΄Π° ΠΈ число 2 Ο€ n Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π°ΠΊ ΠΊΠ°ΠΊ числитСли Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ Ρ€Π°Π²Π½Ρ‹ ΠΈ ΠΈΡ… Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΠΈ, поэтому

Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Как ΡƒΠ·Π½Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π½Π°Ρ‡ΠΈΡ‚, функция f Π½Π΅ пСриодичСская.

Задания для Π³Ρ€ΡƒΠΏΠΏΡ‹ 1.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅ являСтся Π»ΠΈ функция f пСриодичСской ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π΅Π΅ основной ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ (Ссли сущСствуСт).

Задания для Π³Ρ€ΡƒΠΏΠΏΡ‹ 2.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅ являСтся Π»ΠΈ функция f пСриодичСской ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π΅Π΅ основной ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ (Ссли сущСствуСт).

Задания для Π³Ρ€ΡƒΠΏΠΏΡ‹ 3.

По ΠΎΠΊΠΎΠ½Ρ‡Π°Π½ΠΈΠΈ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΏΡ€Π΅Π·Π΅Π½Ρ‚ΡƒΡŽΡ‚ свои Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ.

VI. ПодвСдСниС ΠΈΡ‚ΠΎΠ³ΠΎΠ² ΡƒΡ€ΠΎΠΊΠ°.

Π£Ρ‡ΠΈΡ‚Π΅Π»ΡŒ Π²Ρ‹Π΄Π°Ρ‘Ρ‚ учащимся ΠΊΠ°Ρ€Ρ‚ΠΎΡ‡ΠΊΠΈ с рисунками ΠΈ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ Π·Π°ΠΊΡ€Π°ΡΠΈΡ‚ΡŒ Ρ‡Π°ΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ рисунка Π² соотвСтствии с Ρ‚Π΅ΠΌ, Π² ΠΊΠ°ΠΊΠΎΠΌ ΠΎΠ±ΡŠΡ‘ΠΌΠ΅, ΠΊΠ°ΠΊ ΠΈΠΌ каТСтся, ΠΎΠ½ΠΈ ΠΎΠ²Π»Π°Π΄Π΅Π»ΠΈ способами исслСдования Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ, Π° Π² части Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ рисунка – Π² соотвСтствии со своим Π²ΠΊΠ»Π°Π΄ΠΎΠΌ Π² Ρ€Π°Π±ΠΎΡ‚Ρƒ Π½Π° ΡƒΡ€ΠΎΠΊΠ΅.

VII. Π”ΠΎΠΌΠ°ΡˆΠ½Π΅Π΅ Π·Π°Π΄Π°Π½ΠΈΠ΅

1). ΠŸΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅, являСтся Π»ΠΈ функция f пСриодичСской ΠΈ Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π΅Ρ‘ основной ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ (Ссли ΠΎΠ½ сущСствуСт)

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *

Мои умСния ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ
Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ
Мой Π²ΠΊΠ»Π°Π΄ Π² Ρ€Π°Π±ΠΎΡ‚Ρƒ
Π½Π° ΡƒΡ€ΠΎΠΊΠ΅