Как узнать основание параллелограмма

Основание параллелограмма

Основание параллелограмма — это сторона, к которой можно
провести перпендикуляр из точки, лежащей на противоположной стороне.

У каждого параллелограмма только два основания. От любой
точки, лежащей на основании параллелограмма, можно провести
перпендикуляр только к одной точке на противоположной стороне.

Так, как у параллелограмма два основания, соответственно
перпендикуляры, которые проведены из любого основания,
оканчиваются на противоположном основании.

В параллелограмме все перпендикуляры,
имеют начало и конец на двух основаниях.

Площадь параллелограмма рассчитывается через
основание параллелограмма (a) и его высоту (h):

Основания у параллелограмма параллельны
друг другу и не имеют общих точек.

Если отрезок можно провести из вершины параллелограмма
к его основанию, под углом 90 градусов, то этот отрезок разделит
параллелограмм на две геометрические фигуры — треугольник
и прямоугольную трапецию. Два отрезка уже разделят параллелограмм
на два треугольника и прямоугольник между ними.

Каждое основание параллелограмма имеет две общие точки с
двумя сторонами, которые не являются основаниями.

Как найти основание параллелограмма? Основание легко
найти, зная формулу площади параллелограмма. Исходя из
этой формулы, формула основания следующая:

a — основание
S — площадь
h — высота

Углы, которые прилежат к любому из оснований,
составляют в сумме 180 градусов.

Источник

Параллелограмм. Формулы, признаки и свойства параллелограмма

Как узнать основание параллелограмма. Смотреть фото Как узнать основание параллелограмма. Смотреть картинку Как узнать основание параллелограмма. Картинка про Как узнать основание параллелограмма. Фото Как узнать основание параллелограммаКак узнать основание параллелограмма. Смотреть фото Как узнать основание параллелограмма. Смотреть картинку Как узнать основание параллелограмма. Картинка про Как узнать основание параллелограмма. Фото Как узнать основание параллелограмма
Рис.1Рис.2

Признаки параллелограмма

AB||CD, AB = CD (или BC||AD, BC = AD)

∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°

AC 2 + BD 2 = AB 2 + BC 2 + CD 2 + AD 2

Основные свойства параллелограмма

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°

8. Диагонали параллелограмма пересекаются и точкой пересечения делят друг друга пополам:

AO = CO =d 1
2
BO = DO =d 2
2

AC 2 + BD 2 = 2AB 2 + 2BC 2

Стороны параллелограмма

Формулы определения длин сторон параллелограмма:

1. Формула сторон параллелограмма через диагонали и угол между ними:

2. Формула сторон параллелограмма через диагонали и другую сторону:

3. Формула сторон параллелограмма через высоту и синус угла:

a =h b
sin α
b =h a
sin α

4. Формула сторон параллелограмма через площадь и высоту:

a =S
ha
b =S
hb

Диагонали параллелограмма

Формулы определения длины диагонали параллелограмма:

d 2 = √ a 2 + b 2 + 2 ab·cosβ

d 1 = √ a 2 + b 2 + 2 ab·cosα

4. Формула диагонали параллелограмма через площадь, известную диагональ и угол между диагоналями:

d 1 =2S=2S
d 2· sinγd 2· sinδ
d 2 =2S=2S
d 1· sinγd 1· sinδ

Периметр параллелограмма

Формулы определения длины периметра параллелограмма:

P = 2 a + 2 b = 2( a + b )

3. Формула периметра параллелограмма через одну сторону, высоту и синус угла:

P =2( b +h b)
sin α
P =2( a +h a)
sin α

Площадь параллелограмма

Формулы определения площади параллелограмма:

3. Формула площади параллелограмма через две диагонали и синус угла между ними:

S =1d 1 d 2 sin γ
2
S =1d 1 d 2 sin δ
2

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Параллелограмм

Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны. Площадь параллелограмма равна произведению его основания (a) на высоту (h). Также можно найте его площадь через две стороны и угол и через диагонали.

Разновидностями параллелограмма (частные случаи) являются квадрат, прямоугольник и ромб.

Как узнать основание параллелограмма. Смотреть фото Как узнать основание параллелограмма. Смотреть картинку Как узнать основание параллелограмма. Картинка про Как узнать основание параллелограмма. Фото Как узнать основание параллелограмма

Свойства параллелограмма

1. Противоположные стороны тождественны

Как узнать основание параллелограмма. Смотреть фото Как узнать основание параллелограмма. Смотреть картинку Как узнать основание параллелограмма. Картинка про Как узнать основание параллелограмма. Фото Как узнать основание параллелограмма

Так как \( ABCD \) — параллелограмм, то справедливо следующее:

\( AD || BC \Rightarrow \angle 1 = \angle 2 \) как лежащие накрест.

\( AB || CD \Rightarrow \angle3 = \angle 4 \) как лежащие накрест.

Следовательно, \( \triangle ABC = \triangle ADC \) (по второму признаку: \( \angle 1 = \angle 2, \angle 3 = \angle 4 \) и \( AC \) — общая).

2. Противоположные углы тождественны

Как узнать основание параллелограмма. Смотреть фото Как узнать основание параллелограмма. Смотреть картинку Как узнать основание параллелограмма. Картинка про Как узнать основание параллелограмма. Фото Как узнать основание параллелограмма

3. Диагонали разделены пополам точкой пересечения

Как узнать основание параллелограмма. Смотреть фото Как узнать основание параллелограмма. Смотреть картинку Как узнать основание параллелограмма. Картинка про Как узнать основание параллелограмма. Фото Как узнать основание параллелограмма

Таким образом видно, что \( \triangle AOB = \triangle COD \) по второму признаку равенства треугольников (два угла и сторона между ними). То есть, \( BO = OD \) (напротив углов \( \angle 2 \) и \( \angle 1 \) ) и \( AO = OC \) (напротив углов \( \angle 3 \) и \( \angle 4 \) соответственно).

Признаки параллелограмма

Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.

Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос — «как узнать?». То есть, как узнать, что заданная фигура это параллелограмм.

1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны

\( AB = CD \) ; \( AB || CD \Rightarrow ABCD \) — параллелограмм.

Как узнать основание параллелограмма. Смотреть фото Как узнать основание параллелограмма. Смотреть картинку Как узнать основание параллелограмма. Картинка про Как узнать основание параллелограмма. Фото Как узнать основание параллелограмма

Первый признак верен.

2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны

Как узнать основание параллелограмма. Смотреть фото Как узнать основание параллелограмма. Смотреть картинку Как узнать основание параллелограмма. Картинка про Как узнать основание параллелограмма. Фото Как узнать основание параллелограмма

Второй признак верен.

3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны

Как узнать основание параллелограмма. Смотреть фото Как узнать основание параллелограмма. Смотреть картинку Как узнать основание параллелограмма. Картинка про Как узнать основание параллелограмма. Фото Как узнать основание параллелограмма

Третий признак верен.

4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам

\( AO = OC \) ; \( BO = OD \Rightarrow \) параллелограмм.

Как узнать основание параллелограмма. Смотреть фото Как узнать основание параллелограмма. Смотреть картинку Как узнать основание параллелограмма. Картинка про Как узнать основание параллелограмма. Фото Как узнать основание параллелограмма

Источник

Стороны и высота параллелограмма

Как узнать основание параллелограмма. Смотреть фото Как узнать основание параллелограмма. Смотреть картинку Как узнать основание параллелограмма. Картинка про Как узнать основание параллелограмма. Фото Как узнать основание параллелограмма

Свойства

В параллелограмме противоположные стороны друг другу параллельны, а прилежащие находятся образуют определенный угол, поэтому чтобы определить большинство параметров параллелограмма нужно знать кроме сторон высоту или угол, их соединяющий. Если заданы стороны и высота, то одними из первых можно рассчитать периметр и площадь параллелограмма. Периметр параллелограмма, зная стороны, выглядит как их удвоенная сумма, а площадь является произведением высоты и стороны, на которую она опущена. P=2(a+b) S=ah_a=bh_b

Чтобы иметь возможность продолжать расчеты, необходимо найти углы между сторонами α и β. Используя прямоугольный треугольник, образованный высотой со стороной параллелограмма, выводим их взаимосвязь в тригонометрическое отношение. Затем, зная один из углов, в зависимости от того, какая высота была дана, отнимаем его из 180 градусов, чтобы найти второй. (рис.106.1) sin⁡α=h_b/a sin⁡β=h_a/b α=180°-β β=180°-α

Зная углы и стороны, можно найти диагонали параллелограмма по теореме косинусов в треугольниках, которые они образуют со сторонами. Каждая диагональ будет равна корню из суммы квадратов сторон параллелограмма и разности удвоенного их произведения на косинус угла между ними. (рис.106.2) d_1=√(a^2+b^2-2ab cos⁡β ) d_2=√(a^2+b^2-2ab cos⁡α )

Используя эту же теорему косинусов, можно найти угол между диагоналями в одном из четырех треугольников, образованных ими, где сторонами являются половины диагоналей и одна из сторон параллелограмма. (рис.106.3) cos⁡γ=(〖d_1/4〗^2+〖d_2/4〗^2-a^2)/((d_1 d_2)/4)=(〖d_1〗^2+〖d_2〗^2-4a^2)/(2d_1 d_2 ) cos⁡δ=(〖d_1〗^2+〖d_2〗^2-4b^2)/(2d_1 d_2 )

Биссектрисы параллелограмма, проведенные из углов α и β, образуют равнобедренные треугольники, в которых сама биссектриса является основанием, а боковыми конгруэнтными сторонами становится меньшая сторона параллелограмма. Треугольник считается равнобедренным, так как из свойств биссектрисы и суммы углов в треугольнике следует, что углы при основании такого треугольника конгруэнтны. Используя теорему косинусов, можно найти биссектрисы параллелограмма через стороны. (рис. 106.4) l_α=√(2a^2-2a^2 cos⁡β )=a√(2-2 cos⁡β ) l_β= b√(2-2 cos⁡α )

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *