Как узнать напряжение стабилитрона
Основные способы проверки исправности стабилитрона
Несколько работающих способов, как проверить стабилитрон на исправность. Технология проверки стабилитрона мультиметром, транзистор-тестером и другими приборами.
Полупроводниковый прибор, называемый стабилитроном, является основным элементом стабилизированного блока питания. Он обеспечивает постоянный уровень напряжения. Однако, во время работы, по тем или иным причинам он может выходить из строя. Специалисту, выполняющему ремонтные работы необходимо знать, как проверить стабилитрон на исправность, или как его еще называют —диод Зенера.
Общие сведения о принципе работы
Если вы не знаете как работает стабилитрон, то прежде чем прочитать текущую статью, прочтите опубликованную ранее — https://samelectrik.ru/kak-rabotaet-stabilitron-i-dlya-chego-on-nuzhen.html.
При достижении определенного напряжения, происходит лавинообразный пробой pn-перехода. Сопротивление перехода уменьшается. В результате напряжение на диоде остается постоянным. А ток, протекающий через полупроводник, увеличивается.
Принцип работы можно проиллюстрировать бочкой с водой, где имеется переливная трубка. Сколько бы мы воды ни наливали в бочку, уровень останется на постоянном уровне.
На нижеприведенном рисунке представлена схема работы на примере бочки с водой.
На рисунке выше представлена вольт-амперная характеристика, обозначение на схеме и его включение.
Проверка мультиметром
Неисправный стабилитрон влияет на напряжение стабилизации источника питания, что сказывается на работоспособности аппаратуры. Поэтому специалисту важно знать, как проверить стабилитрон мультиметром на исправность.
Проверка производится аналогично диоду. Если включить мультиметр в режим измерения сопротивления, то при подключении к стабилитрону в прямом направлении (красный щуп к аноду) прибор покажет минимальное сопротивление, а в обратном — бесконечность. Это говорит об исправности полупроводника.
На рисунке снизу представлена методика проверки мультиметром.
Аналогичным образом можно проверить стабилитрон, не выпаивая из схемы. Но в этом случае прибор будет всегда показывать сопротивление параллельно подключенных ему элементов, что в некоторых случаях сделает проверку таким образом невозможной.
Однако такая проверка китайским тестером не является полноценной, потому что проверка производится только на пробой, или на обрыв перехода. Для полной проверки необходимо собирать небольшую схему. Пример такой схемы для проверки напряжения стабилитрона вы можете увидеть в видео ниже.
Проверка транзистор-тестером
Проверить на работоспособность полупроводниковых элементов можно с помощью универсального тестера радиокомпонентов. Часто его называют транзистор-тестером.
Это универсальный измерительный прибор с цифровым индикатором. С помощью транзистор-тестера можно проверить различные радиодетали. К ним относятся резисторы, конденсаторы, катушки индуктивности. А также и полупроводниковые приборы, транзисторы, тиристоры, диоды, стабилитроны, супрессоры и т.п.
Для проверки работоспособности, зажмите детальку в ZIF-панельке (специальном разъёме с рычагом для зажимания элементов), после чего на дисплее высвечивается схемное обозначение элемента. Однако рассматриваемые в этой статье элементы проверяются как обычные диоды. Поэтому не стоит рассчитывать, что транзистор тестер определит, на какое напряжение стабилитрон. Для этого все равно нужно будет собрать схему типа той, что показана выше или такую как рассмотрим далее.
Рекомендуем посмотреть видео о том, что такое универсальный транзистор-тестер и как им проверять радиоэлектронные компоненты.
Тестер, также как и мультиметр, проверяет целостность р-n перехода и корректно определяет напряжением стабилизации стабилитронов до 4,5 вольт.
При ремонте аппаратуры, рекомендуется элемент стабилизации менять на новый. Не зависимо от наличия исправного p-n перехода. Т.к. высока вероятность, что у диода изменилось напряжение стабилизации или оно может произвольно меняться в процессе работы аппаратуры.
Схема для проверки
Рассмотрим еще одну простейшую схему для определения напряжения стабилизации, которая состоит из:
Для проверки подключают стабилитрон по вышеприведенной схеме и постепенно поднимают напряжение на источнике питания от 0. При этом контролируют показания вольтметра. Как только напряжение на элементе перестанет расти, независимо от его увеличения на блоке питания, это и будет стабилизацией по напряжению.
Если на элементе есть маркировка, то полученные при измерении данные сверяют с таблицей в справочнике по параметрам.
Отметим, что стабилитроны могут выпускаться в различном исполнении. Например, КС162 производятся в керамических корпусах, КС133 в стеклянных, Д814 и Д818 в металлических.
Приведем характеристики некоторых распространенных отечественных стабилитронов:
Для проверки стабилитрона с большими напряжениями стабилизации применяется другая схема, которая представлена на рисунке снизу.
Проверка производится аналогично описанному способу. Похожие приборы выпускаются китайскими производителями.
Однако, можно собрать простейшую схему для проверки стабилитронов с применением мультиметра. Это хорошо показано на видео далее.
Следует предупредить, что показанную на видео электрическую схему применять не рекомендуется, т.к. она небезопасна и требует соблюдения техники безопасности. В противном случае можно получить травму (в лучшем случае).
Примеры из практики
Иногда стабилитроны проверяют на осциллографе, но для этого необходимо собрать специальную схему.
На рисунке снизу представлена схема приставки и ее подключение к осциллографу.
Однако проверка осциллографом должна производиться специалистом, который хорошо умеет им пользоваться.
Стабилитроны часто применяются как ограничивающие или предохранительные приборы. Например, в качестве защиты от перенапряжения на жестком диске, а, вернее, на его входе питания стоят стабилитроны или супрессоры на 6 и 14 вольт. Превышение напряжения приводит к их пробою или выгоранию. Для проверки просто выпаивают эти элементы, и проверяют жесткий диск без них. Если все включается, дело в стабилитронах. Их меняют на новые.
Еще один пример из практики ремонта скутеров, а именно после некорректной установки сигнализации (и не только) иногда выходит из строя стабилитрон, смонтированный в замке зажигания на «Хонда дио 34». Он понижает напряжение бортовой сети с 12 В до 10, после чего скутер можно завести. Если элемент вышел из строя — мопед не заведется. Полупроводник можно заменить аналогичным с напряжением на 3,9. Аналогичная ситуация и на других моделях скутеров от «хонды»: AF35, AF51 и т.д.
Вот мы и рассмотрели основные способы проверки стабилитронов, делитесь случаями из своей практики в комментариях и задавайте вопросы!
Стабилитрон-характеристики, маркировка, принцип работы
Что такое стабилитрон
Практически ни один стабилизатор напряжения не обходится без этого полупроводника. По внешнему виду его легко спутать с диодом. Узнавать, какой из элементов стабилизирует разность потенциалов, можно по маркировке. Диод Зенера (стабилитрон) имеет высокое сопротивление, до тех пор, пока не наступает пробой. Поданное обратное смещение вызывает пробой перехода, и ток начинает быстро увеличиваться, а сопротивление уменьшается в интервале от сотен Ом до его дольных величин. Такой режим работы даёт возможность с определённой точностью поддерживать неизменное значение напряжения на элементе.
Главная задача полупроводника – выполнять стабилизацию напряжения. Выпускают в серию детали, рассчитанные на поддержание от 1,8-400 В. Включение радиодетали в схему выполняется параллельно нагрузке.
Условное графическое обозначение элемента
Внимание! Двухполюсник имеет выводы: катод и анод. Если рассматривать область p-n перехода, то вывод, подключенный к p-области, это анод, а к n-области – это катод.
Полупроводниковые элементы, которые составлены из двух встречно направленных стабилитронов, называют двусторонними (двуханодными).
Классификация этих двухполюсников по функциональному назначению выглядит следующим образом:
Последние предназначены для кратковременного пропускания импульсного тока величиной до сотни ампер. Длительная работа с большими токами вызывает перегрев детали и тепловой пробой.
Внимание! Кремниевый диод (стабилитрон), включенный в схему в обратном направлении, имеет три варианта пробоя: туннельный, лавинный и вызванный тепловой неустойчивостью. Их конструкция подразумевает наступление первых двух пробоев до того, как произойдёт тепловое разрушение перехода.
Схема включения и вольт-амперная характеристика (ВАХ) Zener diode
Маркировка стабилитронов
Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:
Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.
Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:
5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?
Катод у зарубежных стабилитронов помечается в основном черной полосой
Вольт-амперная характеристика стабилитрона
Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:
Uпр – прямое напряжение, В
Эти два параметра в стабилитроне не используются
Uобр – обратное напряжение, В
Uст – номинальное напряжение стабилизации, В
Iст – номинальный ток стабилизации, А
Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.
Imax – максимальный ток стабилитрона, А
Imin – минимальный ток стабилитрона, А
Iст, Imax, Imin – это сила тока, которая течет через стабилитрон при его работе.
Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.
Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax, иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).
Основные характеристики стабилитрона
Чтобы подобрать диод Зенера под существующие цели, надо знать несколько важных параметров. Эти характеристики определят пригодность выбранного прибора для решения поставленных задач.
Номинальное напряжение стабилизации
Первый параметр зенера, на который надо обратить внимание при выборе – напряжение стабилизации, определяемое точкой начала лавинного пробоя. С него начинают выбор прибора для использования в схеме. У разных экземпляров ординарных стабилитронов, даже одного типа, напряжение имеет разброс в районе нескольких процентов, у прецизионных разница ниже. Если номинальное напряжение неизвестно, его можно определить, собрав простую схему. Следует подготовить:
Надо поднимать напряжение источника питания с нуля, контролируя по вольтметру рост напряжения на стабилитроне. В какой-то момент он остановится, несмотря на дальнейшее увеличение входного напряжения. Это и есть фактическое напряжение стабилизации. Если регулируемого источника нет, можно использовать блок питания с постоянным выходным напряжением заведомо выше Uстабилизации. Схема и принцип измерения остаются теми же. Но есть риск выхода полупроводникового прибора из строя из-за превышения рабочего тока.
Стабилитроны применяются для работы с напряжениями от 2…3 В до 200 В. Для формирования стабильного напряжения ниже данного диапазона, используются другие приборы – стабисторы, работающие на прямом участке ВАХ.
Диапазон рабочих токов
Ток, при котором стабилитроны исполняют свою функцию, ограничен сверху и снизу. Снизу он ограничен началом линейного участка обратной ветви ВАХ. При меньших токах характеристика не обеспечивает режима неизменности напряжения.
Верхнее значение лимитировано максимальной мощностью рассеяния, на которую способен полупроводниковый прибор и зависит от его конструкции. Стабилитроны в металлическом корпусе рассчитаны на больший ток, но не надо забывать об использовании радиаторов. Без них наибольшая допустимая мощность рассеяния будет существенно меньше.
Дифференциальное сопротивление
Еще один параметр, определяющий работу стабилитрона – дифференциальное сопротивление Rст. Оно определяется как отношение изменения напряжения ΔU к вызвавшему его изменение тока ΔI. Эта величина имеет размерность сопротивления и измеряется в омах. Графически — это тангенс угла наклона рабочего участка характеристики. Очевидно, что чем меньше сопротивление, тем лучше качество стабилизации. У идеального (не существующего на практике) стабилитрона Rст равно нулю – любое приращение тока не вызовет никакого изменения напряжения, и участок ВАХ будет параллелен оси ординат.
Типы стабилитронов
Существует три основных типа стабилитронов:
Распределение по мощности – это мощные и маломощные стабилитроны.
Разновидности стабилизаторов 12 вольт
В зависимости от конструкции и способа поддержания 12-ти вольтного напряжения выделяют две разновидности стабилизаторов:
Импульсный
Наиболее распространены и популярны среди автолюбителей линейные устройства, отличающиеся простотой самостоятельной сборки, надежностью и долговечностью. Импульсный вид используется значительно реже из-за дороговизны деталей и сложностей самостоятельного изготовления и ремонта.
Классическая модель
Классические стабилизаторы – это большой класс устройств, собираемых на основе таких полупроводниковых деталей, как биполярные транзисторы и стабилитроны. Среди них основную функцию по поддержанию напряжения на уровне 12 В выполняют стабилитроны – разновидность диодов, подключаемых в обратной полярности (к катоду такого полупроводникового прибора подключается плюс источника питания, к аноду – минус), работающих в режиме пробоя. Суть работы данных полупроводниковых деталей заключается в следующем:
В случае превышения напряжения, подаваемого на стабилитрон, относительно заявленного как максимальное производителем прибор очень быстро выходит из строя из-за эффекта теплового пробоя. Чтобы любая модель стабилитрона служила максимально долго, рекомендуется по его спецификации уточнить диапазон напряжений, силы тока, в котором его следует эксплуатировать.
В зависимости от подключения различают два варианта классического стабилизатора: линейный – регулировочные элементы подключаются последовательно нагрузке; параллельный – стабилизирующие напряжение устройства располагаются параллельно запитываемым приборам.
Интегральный стабилизатор
Устройства собирают с использованием небольших по размерам микросхем, способных работать при входном напряжении до 26-30 В, выдавая постоянный 12-ти вольтный ток силой до 1 Ампер. Особенностью данных радиодеталей является наличие 3 ножек – «вход», «выход» и «регулировка». Последняя используется для подключения регулировочного резистора, который используется для настройки микросхемы и предотвращения ее перегрузок.
Более удобные и надежные, собранные на основе стабилизирующих микросхем выравниватели постепенно вытесняют собранные на дискретных элементах аналоги.
Особенности использования стабилитронов
Для использования стабилитронов, особенно российских производителей не желательна работа вне зоны пробоя, что является следствием повышения, со временем, тока утечки. Например, на стабилитрон рассчитанный на U15 В, не рекомендуется подавать отличное от расчетного значение напряжения, по крайней мере необходимо следить за минимальным током стабилизации.
Во время неудачного разброса напряжений, при выборе его к предельному значению, может произойти перегрев устройства и возникает режим пробоя.
Нежелательно подключать стабилитроны в сеть в качестве предохранителя, последствия для стабилитрона будут плачевны, при превышении значения тока они выйдут из строя. Для защиты лучше всего использовать, в некоторых случаях, специализированные стабилитроны (супрессоры) марки ZY5.6. Установка стабилитрона (диода Зенера) в цепь низковольтного питания крайне нежелательно из того, что туннельный пробой при U обладает отрицательным температурным коэффициентом.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Как проверить стабилитрон
Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.
Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:
где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение
Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:
Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.
Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания, а справа замеряем мультиметром полученное напряжение:
Теперь внимательно следим за показаниями мультиметра и блока питания:
Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.
Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!
Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.
Базовая схема параллельного стабилизатора
Простейший параллельный стабилизатор состоит из балластного резистора, включенного последовательно между источником питания и нагрузкой, и стабилитрона, шунтирующего нагрузку на общий провод («на землю»). Его можно рассматривать как делитель напряжения, в котором в качестве нижнего плеча используется стабилитрон. Разница между напряжением питания и напряжением пробоя стабилитрона падает на балластном резисторе, а протекающий через него ток питания разветвляется на ток нагрузки и ток стабилитрона. Стабилизаторы такого рода называются параметрическими: они стабилизируют напряжение за счёт нелинейности вольт-амперной характеристики стабилитрона, и не используют цепи обратной связи.
Расчёт параметрического стаилизатора на полупроводниковых стабилитронах аналогичен расчёту стабилизатора на газонаполненных приборах, с одним существенным отличием: газонаполненным стабилитронам свойственен гистерезис порогового напряжения. При емкостной нагрузке газонаполненный стабилитрон самовозбуждается, поэтому конструкции таких стабилизаторов как правило не содержат емкостных фильтров, а конструктору не нужно учитывать переходные процессы в этих фильтрах. В стабилизаторах на полупроводниковых стабилитронах гистерезис отсутствует, фильтрующие конденсаторы подключаются непосредственно к выводам стабилитрона и нагрузки — как результат, конструктор обязан учитывать броски тока заряда (разряда) этих емкостей при включении (выключении) питания. Наихудшими случаями, при которых вероятен выход из строя элементов стабилизатора или срыв стабилизации, являются:
На практике часто оказывается, что соблюсти все три условия нельзя как по соображениям себестоимости компонентов, так и из-за ограниченного диапазона рабочих токов стабилитрона. В первую очередь можно поступиться условием защиты от короткого замыкания, доверив её плавким предохранителям или тиристорным схемам защиты, или положиться на внутреннее сопротивление источника питания, которое не позволит ему выдать и максимальное напряжение, и максимальный ток одновременно.
Последовательное и параллельное включение
В документации на стабилитроны иностранного производства возможность их последовательного или параллельного включения обычно не рассматривается. В документации на советские стабилитроны встречаются две формулировки:
Последовательное соединение стабилитронов разных серий возможно при условии, что рабочие токи последовательной цепочки укладываются в паспортные диапазоны токов стабилизации каждой
использованной серии. Шунтировать стабилитроны высокоомными выравнивающими резисторами так, как это делается в выпрямительных столбах, нет необходимости. «Любое число» последовательно соединённых стабилитронов возможно, но на практике ограничено техническими условиями на электробезопасность высоковольтных устройств. При соблюдении этих условий, при подборе стабилитронов по ТКН и их термостатировании возможно построение прецизионных высоковольтных эталонов напряжения. К примеру, в 1990-е годы лучшие в мире показатели стабильности имел стабилитронный эталон на 1 миллион В, построенный российской по заказу канадского энергетического института IREQ. Основная погрешность этой установки не превышала 20 ppm, а нестабильность по температуре — не более 2,5 ppm во всём рабочем диапазоне температур.
Составной стабилитрон
Основные параметры стабилитронов
Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.
Рядом паспортные данные современного стабилитрона (2C147A), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.
Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.
Вот схема простого, но надёжного стабилизатора напряжения.
Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.
Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.
Принцип работы стабилитрона
Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус «-«. При таком включении через него протекает обратный ток (I обр) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.
Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст. (напряжение стабилизации) и I ст. (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.
Схемы включения стабилитрона
Основная схема включения стабилитрона – последовательно с резистором, который задает ток через полупроводниковый прибор и берет на себя излишек напряжения. Два элемента составляют обычный делитель. При изменении входного напряжения падение на стабилитроне остается постоянным, а на резисторе изменяется.
Такая схема может использоваться самостоятельно и называется параметрическим стабилизатором. Он поддерживает напряжение на нагрузке постоянным, несмотря на колебания входного напряжения или потребляемого тока (в определенных пределах). Подобный блок ещё используют в качестве вспомогательной схемы там, где нужен источник образцового напряжения.
Подобное включение также применяется в качестве защиты чувствительного оборудования (датчиков и т.п.) от нештатного появления высокого напряжения в линии питания или измерения (постоянного или случайных импульсов). Все, что выше напряжения стабилизации полупроводникового прибора, «срезается». Такая схема называется «барьером Зенера».
Раньше свойство стабилитрона «срезать» верхушки напряжения широко использовалось в схемах формирователей импульсов. В цепях переменного тока применялись двуханодные приборы.
Но с развитием транзисторной техники и появлением интегральных микросхем такой принцип стал использоваться редко.
Если под рукой отсутствует стабилитрон на нужное напряжение, его можно составить из двух. Общее напряжение стабилизации будет равно сумме двух напряжений.
Важно! Нельзя включать стабилитроны параллельно для увеличения рабочего тока! Разброс вольтамперных характеристик приведет к выводу в зону теплового пробоя один стабилитрон, далее выйдет из строя второй из-за превышения тока нагрузки.
Хотя в технической документации времен СССР разрешается включениепараллельное зенеров в параллель, но с оговоркой, что приборы должны быть однотипные и суммарная фактическая мощность рассеяния в процессе эксплуатации не должна превышать допустимую для единичного стабилитрона. То есть, увеличения рабочего тока при таком условии не добиться.
В этом случае выходное напряжение стабилизатора будет меньше Uстабилизации на величину падения напряжения на эмиттерном переходе – для кремниевого транзистора около 0,6 В. Чтобы скомпенсировать это уменьшение, можно включить последовательно со стабилитроном диод в прямом направлении.
Таким способом (включением одного или нескольких диодов) можно подкорректировать выходное напряжение стабилизатора в большую сторону в небольших пределах. Если надо радикально повысить Uвых, лучше включить последовательно ещё одни стабилитрон.
Сфера применения стабилитрона в электронных схемах обширна. При осознанном подходе к выбору этот полупроводниковый прибор поможет решить множество задач, поставленных перед разработчиком.
Как сделать 12В стабилизатор
Простые, но при этом достаточно эффективные, надежные и долговечные стабилизирующие устройства можно сделать самостоятельно, используя при этом простые стабилитроны и специальные небольшие микросхемы типа LM317, LD1084, L7812, КРЕН (КР142ЕН8Б).
Стабилизатор на LM317
Процесс сборки такого стабилизирующего напряжение устройства состоит из следующих этапов:
Процесс пайки такого стабилизатора занимает не более 10 минут и с учетом недорогой микросхемы не требует больших капиталовложений. При помощи подобного устройства запитывают светодиодные фонари, ленты.
Микросхема LD1084
Сборка устройства для стабилизации напряжения автомобильной бортовой сети с использованием микросхемы LD1084 производится следующим образом:
Для сглаживания пульсации тока после диодного моста устанавливается еще один электролитический конденсатор емкостью 10 мкф.
Стабилизатор на диодах и плате L7812
Простой интегральный выравниватель на диоде Шоттки и двух конденсаторах собирают следующим образом: