Как узнать наименьшее число

Как найти наименьшее общее кратное чисел

Содержание статьи

Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число

Нахождение наименьшего общего кратного: основные понятия

Чтобы понять, как вычислять НОК, следует определиться в первую очередь со значением термина «кратное».

Кратным числу А называют такое натуральное число, которое без остатка делится на А. Так, числами кратными 5 можно считать 15, 20, 25 и так далее.

Делителей конкретного числа может быть ограниченное количество, а вот кратных бесконечное множество.

Как найти наименьшее общее кратное чисел

Чтобы найти НОК, можно использовать несколько способов.

Для небольших чисел удобно выписать в строчку все кратные этих чисел до тех пор, пока среди них не найдется общее. Кратные обозначают в записи заглавной буквой К.

Например, кратные числа 4 можно записать так:

Так, можно увидеть, что наименьшим общим кратным чисел 4 и 6 является число 24. Эту запись выполняют следующим образом:

Если числа большие, или нужно найти наименьшее общее кратное трех и более чисел, то лучше использовать другой способ вычисления НОК.

Для выполнения задания необходимо разложить предложенные числа на простые множители.

В разложении каждого числа может присутствовать различное количество множителей.

Например, разложим на простые множители числа 50 и 20.

В разложении меньшего числа следует подчеркнуть множители, которые отсутствуют в разложении первого самого большого числа, а затем их добавить к нему. В представленном примере не хватает двойки.

Теперь можно вычислить наименьшее общее кратное 20 и 50.

НОК (20, 50) = 2 * 5 * 5 * 2 = 100

Так, произведение простых множителей большего числа и множителей второго числа, которые не вошли в разложение большего, будет наименьшим общим кратным.

Чтобы найти НОК трех чисел и более, следует их все разложить на простые множители, как и в предыдущем случае.

В качестве примера можно найти наименьшее общее кратное чисел 16, 24, 36.

Так, в разложение большего числа на множители не вошли только две двойки из разложения шестнадцати (одна есть в разложении двадцати четырех).

Таким образом, их нужно добавить к разложению большего числа.

НОК (12, 16, 36) = 2 * 2 * 3 * 3 * 2 * 2 = 9

Существуют частные случаи определения наименьшего общего кратного. Так, если одно из чисел можно поделить без остатка на другое, то большее из этих чисел и будет наименьшим общим кратным.

Например, НОК двенадцати и двадцати четырех будет двадцать четыре.

Если необходимо найти наименьшее общее кратное взаимно простых чисел, не имеющих одинаковых делителей, то их НОК будет равняться их произведению.

Источник

Наименьшее общее кратное (НОК) — алгоритмы и примеры определения

Базовые понятия

Для вычисления НОК (наименьшее общее кратное) необходимо разобраться с терминами и определениями. Если любое натуральное число делится на Х без остатка, это число считается кратным Х. Например, 14, 49, 63 кратны 7.

Любое число в математике может иметь бесконечное множество кратных. А вот количество делителей для него самого ограничено. У простых чисел их всего 2 — это единица и само простое число.

Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число

НОК может быть общим сразу для нескольких величин. Если какая-то из них делится без остатка сразу на 2 числа, она называется общим кратным этой пары. Например, 10 кратно одновременно 2 и 5, то есть его можно разделить нацело на 2 и на 5. Однако для 2 и 5 кратным может быть не только 10, но и другие величины — 20, 50, 100 и так далее. С математической точки зрения, важно определить меньшую из этих величин.

Наименьшее общее кратное или НОК для величин А и В — это самое маленькое число, которое одновременно делится на А и на В. То есть оно кратно сразу А и В.

Вместо переменных можно подставлять любые числа и искать для них этот показатель.

Методы нахождения

Чтобы найти НОК 2 чисел, в математике используются три способа. Каждый из них может быть применен для проведения вычислений. Если все операции совершены правильно, в результате получится один и тот же ответ при всех методах.

Первый способ

При этом способе применяется метод простого подбора. Для многих учеников он самый простой. Порядок вычисления будет такой:

Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число

Пример: необходимо найти НОК для 6 и 8. Сначала составляется ряд кратных 6. Он будет выглядеть так: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60 и так далее. Для числа 8 ряд кратных будет иметь вид: 8, 16, 24, 32, 40. 48, 56, 64, 72, 80 и так далее. Если изучить оба ряда, можно обнаружить 2 одинаковых числа — 24 и 48. Меньшим из них является 24. Это и есть НОК для 6 и 8. Для проверки делят 24 на эти величины. В обоих случаях получаются целые величины без остатка.

Второй вариант

Для вычисления вторым способом нужно разложить на простые множители обе величины. Простым множителем в математике принято называть число, которое делится без остатка только на 1 и на себя.

Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число

Следующий шаг — выписываются все множители из первого ряда. Затем добавляются те цифры, которых не было в первом ряду, но были во втором. Получится цепочка из нескольких простых чисел. Их необходимо перемножить между собой, в результате чего получится НОК.

Пример: требуется найти НОК для 8 и 12. Для начала нужно разложить на простые множители 8. Получится 2, 2 и 2. Дальше раскладывается аналогичным образом число 12. Получается 2, 2 и 3. Выписываются множители из первого разложенного ряда 2х2х2. Далее добавляются цифры из второго ряда, которых нет в первом — 2х2х2х3.

После перемножения этих величин получается 24. Это и будет НОК для 12 и 8, поскольку оно делится нацело на оба числа. Фактически все действие сводится к разложению на простые множители двух величин одновременно.

Третий алгоритм

Существует еще один метод нахождения НОК. Решать примеры с его помощью можно только для двух чисел. Необходимо заранее знать наибольший общий делитель — НОД. Так принято называть самое большое число, на которое 2 какие-либо переменные делятся без остатка. Вместо переменных можно ввести конкретные данные. НОД возможно вычислить не только для 2, но и для большего количества величин. В математике это понятие принято записывать кратко НОД (х, у).

Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число

Пример: требуется рассчитать НОД для 90 и 117. При разложении на простые множители 90 получается ряд 2,3,3,5. Ту же операцию проводят с числом 117 — получается 3,3,13. Для вычисления НОД умножают общие для двух рядов множители — 3х3=9. Значит, НОД (90,117) = 9.

Часто получается, что наибольший общий делитель равняется одному из чисел. Так бывает, если на него можно разделить все остальные. Например, для 10, 20 и 30 наибольшим делителем будет 10.

Если в задаче необходимо найти одновременно НОД и НОК, применяют третий способ вычисления. Алгоритм работы следующий:

Пример: требуется найти НОД и НОК для чисел 115 и 175. Вначале вычисляется НОД. В этом случае он будет равняться 5. Затем 25 и 40 перемножают, получается 20125.

Полученный результат делят на 5, в итоге НОК 15 и 40 равно 4025.

Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число

Чтобы проверить достоверность результата, можно вычислить НОК первым или вторым методами.

Например, нужно найти НОК (25, 40).

Наибольшим делителем для них будет 5. Тогда (25х40):5 = 200.

Проверка вторым способом:

Такой же результат будет получен и при решении вторым методом.

Особые случаи

Не во всех случаях вычисление проводится стандартными способами. Существуют пары чисел с особыми свойствами, для которых найти НОК можно без громоздких вычислений.

К таким случаям относятся следующие:

Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число

Большинство учащихся быстро усваивают, как найти НОК двух чисел.

Однако некоторых вводят в растерянность ситуации, когда требуется вычислить НОК или НОД для трех или более исходных. В этом случае необходимо последовательно находить кратное для каждой пары из имеющегося ряда.

Для этих случаев в математике есть особая теорема. Если имеется числовой ряд с формулой А1, А2, А3… Ах, то НОК для всех показателей вычисляется последовательно. Вначале НОК (А1, А2), затем для А2, А3 и так далее.

Однако такой путь может оказаться довольно трудоемким.

Чтобы сэкономить время, можно воспользоваться другим методом поиска:

Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число

Применение онлайн-калькулятора

Современные технологии позволяют не рассчитывать нужные данные на бумаге. Любой пользователь может найти в интернете НОД и НОК калькулятор, работающий в онлайн-режиме. Такой онлайн-сервис особенно удобен, если нужно найти делитель и кратное для 3 и более чисел.

Чтобы получить нужные расчеты, достаточно ввести в окошки калькулятора исходные данные и выбрать НОД или НОК. Поскольку между этими понятиями существует тесная связь, обычно они вычисляются вместе. Внизу находится кнопка «найти», которую нужно нажать. Через 2−3 секунды внизу появится ответ. Кроме того, некоторые сервисы выдают не только конечные результаты, но и пошаговый порядок расчетов. Здесь же можно найти онлайн-тесты на заданную тему.

Таким образом, учащийся может понять алгоритм действий и усвоить правило при вычислении НОК онлайн. Это всегда проще сделать на практическом примере.

Источник

Наименьшее общее кратное

Для того, чтобы находить общий знаменатель при сложении и вычитании дробей с разными знаменателями необходимо знать и уметь рассчитывать наименьшее общее кратное (НОК).

Кратное числу « a » — это число, которое само делится на число « a » без остатка.

Числа кратные 8 (то есть, эти числа разделятся на 8 без остатка): это числа 16, 24, 32 …

Кратные 9: 18, 27, 36, 45 …

Чисел, кратных данному числу a бесконечно много, в отличии от делителей этого же числа. Делителей — конечное количество.

Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число

Общим кратным двух натуральных чисел называется число, которое делится на оба эти числа нацело.

Наименьшим общим кратным (НОК) двух и более натуральных чисел называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел.

Как найти НОК

НОК можно найти и записать двумя способами.

Первый способ нахождения НОК

Данный способ обычно применяется для небольших чисел.

Второй способ нахождения НОК

Этот способ удобно использовать, чтобы найти НОК для трёх и более чисел.

Количество одинаковых множителей в разложениях чисел может быть разное.

Как узнать наименьшее число. Смотреть фото Как узнать наименьшее число. Смотреть картинку Как узнать наименьшее число. Картинка про Как узнать наименьшее число. Фото Как узнать наименьшее число24 = 2 · 2 · 2 · 3

НОК (12, 16, 24) = 2 · 2 · 2 · 3 · 2 = 48

Ответ: НОК (12, 16, 24) = 48

Особые случаи нахождения НОК

На нашем сайте вы также можете с помощью специального калькулятора найти наименьшее общее кратное онлайн, чтобы проверить свои вычисления.

Источник

Наименьшее общее кратное

Общее кратное

Число может быть кратно не одному, а сразу нескольким числам, такое число называется общим кратным данных чисел.

Числу 3 кратны числа: 6, 9, 12, 15 и т. д.

Числу 4 кратны числа: 8, 12, 16, 20 и т. д.

Можно заметить, что одно и тоже число (12) делится нацело сразу на оба числа 3 и 4. Следовательно, число 12 есть общее кратное чисел 3 и 4.

Общее кратное чисел — это любое число, которое делится без остатка на каждое из данных чисел.

Найти общее кратное нескольких натуральных чисел достаточно легко, можно просто перемножить данные числа, полученное произведение и будет их общим кратным.

Пример. Найти общее кратное для чисел 2, 3, 4, 6.

Число 144 — общее кратное чисел 2, 3, 4 и 6.

Для любого количества натуральных чисел существует бесконечно много кратных.

Пример. Для чисел 12 и 20 кратными будут числа: 60, 120, 180, 240 и т. д. Все они являются общими кратными для чисел 12 и 20.

Наименьшее общее кратное

Наименьшее общее кратное (НОК) нескольких чисел — это самое маленькое натуральное число, которое делится без остатка на каждое из этих чисел.

Пример. Наименьшим общим кратным чисел 3, 4 и 9 является число 36, никакое другое число меньше 36 не делится одновременно на 3, 4 и 9 без остатка.

Наименьшее общее кратное записывается так:

Числа в круглых скобках могут быть указаны в любом порядке.

Пример. Запишем наименьшее общее кратное чисел 3, 4 и 9:

Как найти НОК

Рассмотрим два способа нахождения наименьшего общего кратного: с помощью разложения чисел на простые множители и нахождение НОК через НОД.

С помощью разложения на простые множители

Чтобы найти НОК нескольких натуральных чисел, надо разложить эти числа на простые множители, затем взять из этих разложений каждый простой множитель с наибольшим показателем степени и перемножить эти множители между собой.

Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.

Решение: разложим каждое из этих чисел на простые множители:

Наименьшее общее кратное должно делиться на 99, значит, в его состав должны входить все множители числа 99. Далее НОК должно делиться и на 54, т. е. в его состав должны входить множители и этого числа.

Выпишем из этих разложений каждый простой множитель с наибольшим показателем степени и перемножим эти множители между собой. Получим следующее произведение:

Это и есть наименьшее общее кратное данных чисел. Никакое другое число меньше 594 не делится нацело на 99 и 54.

Ответ: НОК (99, 54) = 594.

Так как взаимно простые числа не имеют одинаковых простых множителей, то их наименьшее общее кратное равно произведению этих чисел.

Пример. Найдите наименьшее общее кратное двух чисел 12 и 49.

Решение: разложим каждое из этих чисел на простые множители:

12 = 2 · 2 · 3 = 2 2 · 3,

Применяя к этому случаю правило, мы придём к заключению, что взаимно простые числа надо просто перемножить:

2 2 · 3 · 7 2 = 12 · 49 = 980.

Ответ: НОК (12, 49) = 980.

Таким же образом надо поступать, когда нужно найти наименьшее общее кратное простых чисел.

Пример. Найдите наименьшее общее кратное чисел 5, 7 и 13.

Решение: так как данные числа являются простыми, то просто перемножим их:

Ответ: НОК (5, 7, 13) = 455.

Если большее из данных чисел делится на все остальные числа, то это число и будет наименьшим общим кратным данных чисел.

Пример. Найдите наименьшее общее кратное чисел 24, 12 и 4.

Решение: разложим каждое из этих чисел на простые множители:

24 = 2 · 2 · 2 · 3 = 2 3 · 3,

12 = 2 · 2 · 3 = 2 2 · 3,

Можно заметить, что разложение большего числа содержит все множители остальных чисел, значит большее из этих чисел делится на все остальные числа (в том числе и само на себя) и является наименьшим общим кратным:

Ответ: НОК (24, 12, 4) = 24.

Нахождение НОК через НОД

НОК двух натуральных чисел равно произведению этих чисел, поделённого на их НОД.

Правило в общем виде:

Пример. Найдите наименьшее общее кратное двух чисел 99 и 54.

Теперь мы можем вычислить НОК этих чисел по формуле:

НОК (99, 54) = 99 · 54 : НОД (99, 54) = 5346 : 9 = 594.

Ответ: НОК (99, 54) = 594.

Чтобы найти НОК трёх или более чисел используется следующий порядок действий:

Пример. Найдите наименьшее общее кратное чисел 8, 12 и 9.

Решение: сначала находим наибольший общий делитель любых двух из этих чисел, например, 12 и 8:

Вычисляем их НОК по формуле:

НОК (12, 8) = 12 · 8 : НОД (12, 8) = 96 : 4 = 24.

Теперь найдём НОК числа 24 и оставшегося числа 9. Их НОД:

Вычисляем НОК по формуле:

НОК (24, 9) = 24 · 9 : НОД (24, 9) = 216 : 3 = 72.

Ответ: НОК (8, 12, 9) = 72.

Калькулятор НОК

Источник

Нахождение наименьшего общего кратного: способы, примеры нахождения НОК

Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы рассмотрим способы нахождения НОК для трех чисел и более, разберем вопрос о том, как найти НОК отрицательного числа.

Вычисление наименьшего общего кратного (НОК) через НОД

Мы уже установили связь наименьшего общего кратного с наибольшим общим делителем. Теперь научимся определять НОК через НОД. Сначала разберемся, как делать это для положительных чисел.

Решение

Решение

В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b : если первое число делится на второе, что НОК этих чисел будет равно первому числу.

Нахождение НОК с помощью разложения чисел на простые множители

Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители.

Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:

Решение

Найдем все простые множители чисел, данных в условии:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.

Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:

Решение

Нахождение НОК трех и большего количества чисел

Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.

Теперь рассмотрим, как можно применять теорему для решения конкретных задач.

Решение

Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.

Предлагаем вам следующий алгоритм действий:

Решение

Нахождение наименьшего общего кратного отрицательных чисел

Для того, чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.

Решение

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *