Как узнать линейное уравнение
Линейное уравнение
теория по математике 📈 уравнения
Уравнение – это равенство, содержащее переменную, значение которой надо найти.
Уравнение с одним неизвестным, содержащим первую степень, называется линейным уравнением с одной переменной. Стандартный вид линейного уравнения ax+b=0, где a и b некоторые числа, а х – переменная. Также стандартным видом уравнения можно считать и вид ax=b.
Так, например, к линейным относятся уравнения:
6х+21=0; 34–2х=0; 34х=17; 89х=0
Уравнения, содержащие несколько слагаемых с переменной или без нее, а также скобки, называются уравнениями, сводящимися к линейным. То есть при его упрощении должно получиться линейное уравнение стандартного вида. К таким уравнениям могут относиться уравнения вида:
х+12=4х–45; 19х–67=98; х=–32+17х; 7(х+13)=89–14х
Решить уравнение – это значит найти все его корни или доказать, что корней нет.
Что такое корень уравнения?
Вспомним, что корнем уравнения называется значение переменной, при котором уравнение обращается в верное равенство.
Корни линейного уравнения
Наличие корней зависит от коэффициентов а и b.
Рассмотрим нахождение количества корней на примерах.
Здесь коэффициент а отличен от нуля. Значит, уравнение имеет один корень.
Здесь коэффициент а равен нулю, поэтому корней нет.
Здесь оба коэффициента равны нулю, поэтому уравнение имеет множество корней, или, еще можно сказать, что корнем уравнения является любое число.
Чтобы найти корни уравнения, надо его решить, используя алгоритм, по которому из одного уравнения мы сможем получить уравнение, равносильное данному. Сначала вспомним, что при переносе слагаемых из одной части в другую, мы получаем уравнение, равносильное данному. Также можно делить или умножать обе части уравнения на одно и то же число.
Пример №2. Решить уравнение:
В данном уравнении нет скобок, поэтому выполняем перенос слагаемых, изменяя соответственно знаки у тех слагаемых, которые переносим (обычно слагаемые с переменной собираем слева, а без переменной – справа): 2х–9х=10+11. Теперь приводим подобные слагаемые и получаем: –7х=21. Видим, что корень находится действием деления (неизвестный множитель): х=21:(–7). Ответ х=–3.
При оформлении решения запись оформляем следующим образом:
Пример №3. Решить уравнение:
Здесь мы видим скобки, поэтому сначала раскроем их, помня о том, то число 2 в левой части уравнения надо умножить на каждое слагаемое в скобках, а в правой части уравнения перед скобкой стоит «минус», поэтому изменяем знаки у слагаемых при раскрытии скобок: 5х–2х+16=9х–3х–11. Выполняем перенос слагаемых: 5х–2х–9х+3х=–11–16. Приводим подобные: –3х=–27. Находим корень уравнения: х=–27:(–3). Получаем ответ: х=9
Пример №4. Решить уравнение:
Выполним всё по алгоритму: перенос слагаемых и приведение подобных слагаемых. 2х–2х=3+12; 0х=15. Видим, что коэффициент а=0, поэтому запишем ответ – нет корней, так как надо 15:0, а мы знаем правило, что на нуль делить нельзя.
Имеем линейное уравнение:
Следовательно, начинаем решение с переноса слагаемых (с переменной влево, без переменной – вправо): 3х + 7х= – 5 – 2, не забывая изменять знак у слагаемых, которые переносим. Теперь приводим подобные в каждой части, получаем 10х= –7.
Находим неизвестный множитель делением произведения –7 на известный множитель 10, получаем –0,7.
Запись решения выглядит так:
pазбирался: Даниил Романович | обсудить разбор | оценить
Линейные уравнения
Примеры линейных уравнений:
Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.
Примеры решения линейных уравнений:
Это линейное уравнение, так как переменная стоит в первое степени.
Попробуем преобразовать его к виду a x = b :
Для начала раскроем скобки:
− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5
Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.
Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:
Это уравнение не является линейным уравнением.
Особые случаи (встречаются редко, но знать их полезно).
Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:
Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:
Задания для самостоятельного решения
Если корней несколько, запишите их через точку с запятой в порядке возрастания.
Решение:
2 − 3 ( 2 x + 2 ) = 5 − 4 x
Переносим иксы влево, числа вправо:
x = 9 − 2 = − 9 2 = − 4,5
№2. При каком значении x значения выражений 7 x − 2 и 3 x + 6 равны?
Решение:
Приравниваем эти два выражения:
№3. Решите уравнение ( − 5 x + 3 ) ( − x + 6 ) = 0.
Если корней несколько, запишите их через точку с запятой в порядке возрастания.
Решение:
Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю. Чтобы найти все корни данного уравнения, надо приравнять каждый множитель к нулю и оба корня взять в ответ.
( − 5 x + 3 ) ( − x + 6 ) = 0 ⇔ [ − 5 x + 3 = 0 − x + 6 = 0 ⇒ [ − 5 x = − 3 ; − x = − 6 ; ⇒ [ x = − 3 − 5 = 3 5 = 0,6 x = − 6 − 1 = 6 1 = 6
В задании указано, что в ответ надо записать корни в порядке возрастания 0,6 6.
Если корней несколько, запишите их через точку с запятой в порядке возрастания.
Решение:
Раскроем квадраты, используя ФСУ (формулы сокращенного умножения):
x 2 − 2 ⋅ x ⋅ 4 + 4 2 + x 2 + 2 ⋅ x ⋅ 9 + 9 2 − 2 x 2 = 0
Замечаем, что x 2 сокращается:
x 2 − 8 x + 4 2 + x 2 + 18 x + 9 2 − 2 x 2 = 0
− 8 x + 18 x + 16 + 81 = 0
Решение:
Раскроем скобки, используя ФСУ.
( x + 10 ) 2 = ( 5 − x ) 2
x 2 + 2 ⋅ x ⋅ 10 + 10 2 = 5 2 − 2 ⋅ 5 ⋅ x + x 2
x 2 + 20 x + 100 = 25 − 10 x + x 2
x 2 + 20 x + 100 − x 2 + 10 x − 25 = 0
Решение:
Как решить линейное уравнение? Уравнение прямой? Что такое линейные уравнения?
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ
Что является решением уравнения?
Решением уравнения является нахождение всех его корней или доказательство их отсутствия.
Примеры линейных уравнений:
3x+5=0
x+1=5
2x=0
7x=7
3x+1=x
| x^2+4x+4=0 | (полное квадратное уравнение оно решается по дискриминанту. Как решаются такие уравнение можно узнать здесь.) |
| 1/x+2=0 | (уравнение гиперболы) |
| √(x-1)=1 | (иррациональное уравнение) |
Чем отличаются линейные уравнения от не линейных?
У линейных уравнений x всегда находится в первой степени в числители. Если одно из условий не выполняется то уравнение нелинейное.
Как решаются линейные уравнения?
Все что связано с переменной x переносим в одну сторону, а обычные числа в другую. Это называется: “Неизвестные в одну сторону известные в другую”. В итоге корень уравнения будет равен x=-b/a. Рассмотрим на примере:
ПРАКТИЧЕСКАЯ ЧАСТЬ
Сделаем проверку уравнения подставим вместо переменной x полученный корень:
2*(-1)+2=0
-2+2=0
0=0
Решено верно
Сделаем проверку уравнения подставим вместо переменной x полученный корень:
2*(-3)-6=4*(-3)
-6-6=-12
-12=-12
Решено верно
Решение простых линейных уравнений
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие уравнения
Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.
В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.


