Как узнать квадрат числа

Урок 25 Бесплатно Степень числа. Квадрат и куб числа

На данном уроке мы познакомимся с понятием степени числа.

Выясним, что называют «показателем степени» и «основанием степени».

Научимся вычислять квадрат и куб числа.

Составим таблицу степеней первых десяти натуральных чисел и рассмотрим ряд задач с использованием таких таблиц.

Определим, в каком порядке выполняют действия в выражениях, содержащих степень.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Степень числа

Известно, что сумму равных слагаемых можно заменить произведением.

Например, сумму пяти слагаемых, каждое из которых равняется четырем, можно записать короче:

4 + 4 + 4 + 4 + 4 = 5 ∙ 4

В произведении число 5 указывает на количество одинаковых слагаемых.

В свою очередь произведение одинаковых множителей тоже можно записать компактнее.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Произведение n одинаковых множителей можно представить в виде степени.

В буквенном виде произведение равных множителей можно представить следующим образом:

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

а— любое натуральное число.

Читают «а в n-ной степени» или «а в степени n».

Число а называют основанием (число, возводимое в степень).

n— это показатель степени (число, которое указывает сколько раз повторяется основание степени).

Степень числа представляют всегда так: записывают основание степени, а показатель ее записывают меньше размером в верхнем правом углу основания степени.

Операция умножения одинаковых множителей называется возведением в степень.

Например, произведение пяти множителей, каждое из которых равняется четырем, можно записать так:

4 ∙ 4 4 4 4 = 4 5

Читают данную запись следующим образом:

4 5 четыре в пятой степени.

Данная степень равна произведению трех двоек.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

2— основание степени.

3— показатель степени.

Данная степень равна произведению четырех пятерок.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

5— основание степени.

4— показатель степени.

Пройти тест и получить оценку можно после входа или регистрации

Квадрат и куб числа

Вторую степень числа называют квадратом числа.

Так, квадрат любого натурального числа а будет представлять собой произведение двух одинаковых множителей: а а = а 2 (говорят и читают «а в квадрате»).

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

2 2 (два во второй степени) иначе говорят и читают «два в квадрате».

10 2 (десять во второй степени) иначе говорят и читают «десять в квадрате».

27 2 (двадцать семь во второй степени) иначе говорят и читают «двадцать семь в квадрате».

Давайте сосчитаем квадраты первого десятка натуральных чисел (возведем во вторую степень первые десять натуральных чисел), используя таблицу умножения.

Один в квадрате равняется одному: 1 2 = 1 ∙ 1 = 1.

Два в квадрате равняется четырем: 2 2 = 2 ∙ 2 = 4.

Три в квадрате равняется девяти: 3 2 = 3 ∙ 3 = 9.

Четыре в квадрате равняется шестнадцати: 4 2 = 4 ∙ 4 = 16.

Пять в квадрате равняется двадцати пяти: 5 2 = 5 ∙ 5 = 25.

Шесть в квадрате равняется тридцати шести: 6 2 = 6 ∙ 6 = 36.

Семь в квадрате равняется сорока девяти: 7 2 = 7 ∙ 7 = 49.

Восемь в квадрате равняется шестидесяти четырем: 8 2 = 8 ∙ 8 = 64.

Девять в квадрате равняется восьмидесяти одному: 9 2 = 9 ∙ 9 = 81.

Десять в квадрате равняется сотне: 10 2 = 10 ∙ 10 = 100.

Оформим полученные данные квадратов натуральных чисел от 1 до 10 в виде таблицы.

Таблица квадратов первых десяти натуральных чисел

Учитывая данные таблицы квадратов, решим уравнение.

Решим уравнение х 2 = 49.

Решить уравнение- это значит найти корень уравнения (в нашем случае установить значение х).

Следовательно, корень уравнения (х) равен семи.

х 2 = 49

х = 7

Проверка: подставим найденное значение неизвестной (х = 7) в исходное уравнение х 2 = 49, получим:

7 2 = 49

7 ∙ 7 = 49

49 = 49

Ответ: х = 7.

У меня есть дополнительная информация к этой части урока!

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Чтобы возвести в любую степень число 10, необходимо дописать после единицы нули, количество которых показывает показатель степени.

Разберем пример первый.

Найдите четвертую степень десяти (десять в четвертой степени 10 4 ).

10— это основание.

4— это показатель степени.

Так как по вышеизложенному правилу количество нулей после единицы должно быть равно показателю степени, то результат запишем следующим образом:

10 4 = 1 0000

На самом деле, если перемножить (по определению степени) четыре десятки, то получим:

10 4 = 1 0 1 0 ∙ 1 0 ∙ 1 0 = 1 0000

Пример второй: найдите третью степень десяти (десять в третьей степени 10 3 ).

10— это основание.

3— это показатель степени.

Так как по правилу количество нулей после единицы должно быть равно показателю степени, то результат запишем следующим образом:

10 3 = 1 000

Соответственно, если перемножить (по определению степени) три десятки, то получим:

10 3 = 1 0 1 0 ∙ 1 0 = 1 000

Рассмотрим обратную ситуацию:

Представим число 100 в виде степени с основанием 10.

Запишем основание 10, а показателем будет число, равное количеству нулей исходного числа (1 00 ).

Число 100 содержит два нуля, следовательно, это число в виде степени с основанием 10 представим следующим образом:

1 00 = 10 2

10— это основание.

2— это показатель степени.

Рассмотрим еще один подобный пример.

Представим число 10000 в виде степени с основанием 10.

Запишем основание 10, а показателем будет число, равное количеству нулей исходного числа (1 0000 ).

Данное число содержит четыре нуля, следовательно, 10000 в виде степени с основанием 10 представим следующим образом:

1 0000 = 10 4

10— это основание.

4— это показатель степени

Третья степень числа тоже имеет свое название.

Число в третьей степени называют кубом числа.

Так, куб любого натурального числа а будет представлять собой произведение трех одинаковых множителей: а а а = а 3 (говорят и читают «а в кубе»).

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

2 3 (два в третьей степени) иначе говорят и читают «два в кубе».

10 3 (десять в третьей степени) иначе говорят и читают «десять в кубе».

27 3 (двадцать семь в третьей степени) иначе говорят и читают «двадцать семь в кубе».

Давайте определим кубы первого десятка натуральных чисел (возведем в третью степень первые десять натуральных чисел), используя таблицу умножения.

Один в кубе: 1 3 = 1 1 1 = 1.

Два в кубе: 2 3 = 2 2 2 = 8.

Три в кубе: 3 3 = 3 ∙ 3 ∙ 3 = 27.

Четыре в кубе: 4 3 = 4 ∙ 4 4 = 64.

Пять в кубе: 5 3 = 5 ∙ 5 5 = 125.

Шесть в кубе: 6 3 = 6 ∙ 6 6 = 216.

Семь в кубе: 7 3 = 7 ∙ 7 7 = 343.

Восемь в кубе: 8 3 = 8 ∙ 8 8 = 512.

Девять в кубе: 9 3 = 9 ∙ 9 9 = 729.

Десять в кубе: 10 3 = 10 ∙ 10 10 = 1000.

Оформим полученные данные кубов натуральных чисел от 1 до 10 в виде таблицы.

Таблица кубов первых десяти натуральных чисел

1000

С помощью таблицы кубов можно легко и просто решать примеры и задачи, в которых необходимо высчитывать третью степень числа.

Представим в виде куба число 343.

По таблице кубов видим, что 343 = 7 3

Проверим: найдем произведение трех семерок:

7 3 = 7 ∙ 7 7 = 49 ∙ 7 = 343

На прошлом уроке мы подробно разобрали порядок выполнения арифметических действий в выражениях.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Выяснили, что в первую очередь выполняются арифметические действия в скобках, затем-действия второй ступени (умножение и деление) по порядку их следования слева направо, и только потом выполняются действия первой ступени (сложение и вычитание) по порядку слева направо.

Однако, в математических выражениях, в которых отсутствуют скобки, но есть действия первой, второй ступени и степень, возведение в степень выполняется раньше других действий, только потом умножают, делят, складывают и вычитают в установленном правилами порядке.

Если в скобках содержится степенное выражение, то действия в скобках выполняются по порядку слева направо, начиная с действий высшей ступени- возведение в степень, и далее по известным нам правилам.

За скобками действия выполняют, соблюдая порядок выполнения действий без скобок, рассмотренный выше.

Рассмотрим поясняющие примеры.

При решении различных задач и примеров будем пользоваться составленными таблицами степеней.

Пример 1.

Определим порядок действий в выражении и найдем его значение.

Так как исходное выражение не содержит скобки, а возведение в степень- это действие более высокой ступени, чем умножение, деление, сложение и вычитание, следовательно, в первую очередь необходимо выполнить вычисление степени, затем слева направо в порядке следования сначала действия второй ступени (деление), затем- действия первой ступени (вычитание).

1) 8 2 = 8 8 = 64 (по определению степени или по таблице квадратов).

2) 64 ÷ 4 = 16

Пример 2.

Найдем значение данного выражения, определив порядок действий в нем.

Согласно порядка выполнения действий сначала выполняются действия в скобках.

Найдем разность 21 и 11.

Далее выполняется действие высшей ступени (возведение в степень), т.е. разность, полученную в скобках, возведем в квадрат.

Найдем, чему равно 10 2 по определению степени или по таблице квадратов.

2) 10 2 = 10 ∙ 10 = 100

Затем выполним действия, которые находятся в исходном выражении за скобками.

Определим третью степень двойки по таблице кубов или по определению степеней.

3) 2 3 = 2 ∙ 2 ∙ 2 = 8

4) 100 ∙ 8 = 800

У меня есть дополнительная информация к этой части урока!

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

С давних пор основными арифметическими операциями являются операции сложения, вычитания, умножения и деления.

Представление о степени, как об отдельной операции возникло не сразу.

Однако степени применялись при вычислении площадей и объемов уже у древних народов: степень числа высчитывали при решении различных задач в Древнем Египте, Древней Греции, в Вавилоне.

Диофант Александрийский древнегреческий математик, философ (III век н.э.) в своем знаменитом труде «Арифметика» описал первые натуральные степени чисел.

Диофант первым из античных ученых предложил специальные обозначения для шести степеней неизвестного (квадрат, куб, квадрато-квадраты, квадрато-кубы и т.д.)

Древнегреческий ученый Пифагор и его последователи (пифагорейцы) проявляли большой интерес к числам, искали в них скрытый смысл, закономерности и приписывали им различные свойства.

Пифагорейцы предполагали, что каждое число можно представить в виде фигуры.

Так, например, числа 4, 9, 16, 25 они представляли в виде квадратов.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

В Древнем Вавилоне для вычисления и расчетов был создан целый ряд вычислительных таблиц: таблицы умножения, таблицы квадратов и кубов и многие другие.

В Древней Индии успешно развивалась наука.

Высоких результатов индийцы добились в астрономии, медицине, математике.

Индийские ученые часто оперировали большими числами.

В Древней Индии существовало понятие степени числа, математики того времени умели вычислять площади и объемы фигур, разработали алгоритмы вычисления всех арифметических операций, в том числе определение степени числа.

Важнейшим открытием индийских ученых в математике стало изобретение позиционной системы счисления, а также запись (чтение) чисел, для каждой цифры был придуман свой знак.

Математические труды их были изложены в основном в словесной форме на древнеиндийском языке в священных писаниях, книгах, сказаниях.

Потребность в решении более сложных математических задач со степенями заставляла ученых разных стран расширять понятие о степени, систематизировать и обобщать известные уже данные о ней.

В начале XV века самаркандский математик Гияс ад-Дин Джемшид Аль-Каши рассматривал нулевой показатель степени, в это же время французский ученый Никола Шюке применял в своих трудах нулевой и отрицательный показатель степени.

В 1544 г. немецкий математик Михаэль Штифель в своей книге «Полная арифметика» впервые ввел понятие «Показатель степени».

Постепенно понятие степени становится все шире, оно применяется не только к числу, но и к переменной.

Математики средневековья пытались установить единое обозначение степени и сделать ее компактней.

Французский ученый математик Франсуа Виет ввел буквенное обозначение (N, Q, C) для первой, второй и третьей степени.

Нидерландский математик Симон Стевин предложил называть степень по их показателям, отвергая тем самым словесные обозначения степеней, составленные Диофантом.

Современное обозначение степеней (а n ), где а-основание степени, n-показатель степени, ввел французский математик Рене Декарт.

Пройти тест и получить оценку можно после входа или регистрации

Источник

Вычислить квадратный корень из числа

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа
Необходимо произвести сложные расчеты, а электронного вычислительного устройства под рукой не оказалось? Воспользуйтесь онлайн программой — калькулятором корней. Она поможет:

Число знаков после запятой:
Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Что такое квадратный корень

Корень n степени натурального числа a — число, n степень которого равна a (подкоренное число). Обозначается корень символом √. Его называют радикалом.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Каждое математическое действие имеет противодействие: сложение→вычитание, умножение→деление, возведение в степень→извлечение корня.

Квадратным корнем из числа a будет число, квадрат которого равен a. Из этого следует ответ на вопрос, как вычислить корень из числа? Нужно подобрать число, которое во второй степени будет равно значению под корнем.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Обычно 2 не пишут над знаком корня. Поскольку это самая маленькая степень, а соответственно если нет числа, то подразумевается показатель 2. Решаем: чтобы вычислить корень квадратный из 16, нужно найти число, при возведении которого во вторую степень получиться 16.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Проводим расчеты вручную

Вычисления методом разложения на простые множители выполняется двумя способами, в зависимости от того, какое подкоренное число:

1.Целое, которое можно разложить на квадратные множители и получить точный ответ.

Квадратные числа — числа, из которых можно извлечь корень без остатка. А множители — числа, которые при перемножении дают исходное число.

25, 36, 49 — квадратные числа, поскольку:

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа
Получается, что квадратные множители — множители, которые являются квадратными числами.

Возьмем 784 и извлечем из него корень.

Раскладываем число на квадратные множители. Число 784 кратно 4, значит первый квадратный множитель — 4 x 4 = 16. Делим 784 на 16 получаем 49 — это тоже квадратное число 7 x 7 = 16.Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа
Применим правило

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Извлекаем корень из каждого квадратного множителя, умножаем результаты и получаем ответ.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Ответ. Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

2.Неделимое. Его нельзя разложить на квадратные множители.

Такие примеры встречаются чаще, чем с целыми числами. Их решение не будет точным, другими словами целым. Оно будет дробным и приблизительным. Упростить задачу поможет разложение подкоренного числа на квадратный множитель и число, из которого извлечь квадратный корень нельзя.

Раскладываем число 252 на квадратный и обычный множитель.Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа
Оцениваем значение корня. Для этого подбираем два квадратных числа, которые стоят впереди и сзади подкоренного числа в цифровой линейки.Подкоренное число — 7. Значит ближайшее большее квадратное число будет 8, а меньшее 4.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числамежду 2 и 4.

Оцениваем значениеВероятнее √7 ближе к 2. Подбираем таким образом, чтобы при умножении этого числа на само себя получилось 7.

2,7 x 2,7 = 7,2. Не подходит, так как 7,2>7, берем меньшее 2,6 x 2,6 = 6,76. Оставляем, ведь 6,76

7.

Вычисляем кореньКак узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Как вычислить корень из сложного числа? Тоже методом оценивая значения корня.

При делении в столбик получается максимально точный ответ при извлечении корня.

Возьмите лист бумаги и расчертите его так, чтобы вертикальная линия находилась посередине, а горизонтальная была с ее правой стороны и ниже начала.Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа
Разбейте подкоренное число на пары чисел. Десятичные дроби делят так:

— целую часть справа налево;

— число после запятой слева направо.

Пример: 3459842,825694 → 3 45 98 42, 82 56 94

Допускается, что вначале остается непарное число.

Для первого числа (или пары) подбираем наибольшее число n. Его квадрат должен быть меньше или равен значению первого числа (пары чисел).

Извлеките из этого числа корень — √n. Запишите полученный результат сверху справа, а квадрат этого числа — снизу справа.

У нас первая 7. Ближайшее квадратное число — 4. Оно меньше 7, а 4 = Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа
Вычтите найденный квадрат числа n из первого числа (пары). Результат запишите под 7.

А верхнее число справа удвойте и запишите справа выражение 4_х_=_.

Примечание: числа должны быть одинаковыми.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа
Подбираем число для выражения с прочерками. Для этого найдите такое число, чтобы полученное произведение не было больше или равнялось текущему числу слева. В нашем случае это 8.Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа
Запишите найденное число в верхнем правом углу. Это второе число из искомого корня.

Снесите следующую пару чисел и запишите возле полученной разницы слева.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа
Вычтите полученное справа произведение из числа слева.

Удваиваем число, которое расположено справа вверху и записываем выражение с прочерками.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа
Сносим к получившейся разнице еще пару чисел. Если это числа дробной части, то есть расположены за запятой, то и в верхнем правом углу возле последней цифры искомого квадратного корня ставим запятую.

Заполняем прочерки в выражении справа, подбирая число так, чтобы полученное произведение было меньше или равно разницы выражения слева.

Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа
Если необходимо большее количества знаков после запятой, то дописывайте возле текущей цифры слева и повторяйте действия: вычитание слева, удваиваем число в верхнем правом углу, записываем выражение прочерками, подбираем множители для него и так далее.Как узнать квадрат числа. Смотреть фото Как узнать квадрат числа. Смотреть картинку Как узнать квадрат числа. Картинка про Как узнать квадрат числа. Фото Как узнать квадрат числа

Как думаете сколько времени вы потратите на такие расчеты? Сложно, долго, запутанно. Тогда почему бы не упростить себе задачу? Воспользуйтесь нашей программой, которая поможет произвести быстрые и точные расчеты.

1. Введите желаемое количество знаков после запятой.

2. Укажите степень корня (если он больше 2).

3. Введите число, из которого планируете извлечь корень.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *