Как узнать кратность телескопа

Выбираем диаметр и кратность лупы (линзы) для телескопа

Как узнать кратность телескопа. Смотреть фото Как узнать кратность телескопа. Смотреть картинку Как узнать кратность телескопа. Картинка про Как узнать кратность телескопа. Фото Как узнать кратность телескопаЕсли вы обратились к этой статье, скорее всего, вы начинающий любитель астрономии. Это хорошо, ведь впереди вас ждет много новых открытий. И первое, о чем стоит знать, – спрашивать о диаметре и кратности лупы для телескопа не совсем правильно. Во-первых, в телескопе нет луп, только линзы. Во-вторых, для определения увеличения оптического прибора нужно знать не только диаметр линзы, но также фокусные расстояния телескопа и окуляра. Только зная все эти параметры, можно определить, как сильно приближает оптический прибор. Давайте научимся это делать.

Как рассчитать кратность телескопа

Кратность телескопа – расчетная величина, которая показывает, во сколько раз увеличивает его оптика. Формула расчета в общем виде выглядит так: фокусное расстояние объектива разделить на фокусное расстояние окуляра. То есть замена окуляра влияет на кратность любого телескопа. Чем больше у вас разнофокусных окуляров, тем больше у вас выбор кратности. Казалось бы, бери самый короткофокусный окуляр и получишь максимальное увеличение. Но есть нюансы, о которых стоит знать, прежде чем радоваться, что ваш телескоп стал приближать, например, в 500 крат. Это всего лишь теоретическое увеличение. Но что будет на практике?

Поговорим о самом важном моменте, который нужно учитывать при оценке увеличения телескопа. Оптика – это раздел физики, и она подчиняется строгим физическим законам. У каждой оптической системы есть предел увеличения, после которого качество картинки начинает ухудшаться. До этого предела на любом увеличении можно достичь четкости, когда каждая точка объекта видна отдельно. А после его преодоления точки начинают расползаться и накладываться друг на друга, и в итоге получается большое и размытое пятно. Радости от его лицезрения не будет никакой. Этот предел называется «максимально полезным увеличением» и рассчитывается по формуле: диаметр объектива умножить на два. То есть телескоп с диаметром объектива в 70 мм, будет четко показывать все детали только до увеличения в 140х, дальнейшие улучшения оптики не приведут к хорошему результату. Как ни меняй окуляры, 140 крат – предел возможностей этой оптической системы.

Но не стоит расстраиваться. В астрономических наблюдениях нет правила «чем выше кратность увеличения телескопа, тем лучше картинка». Нет, нужно учитывать предмет наблюдений. Большое увеличение хорошо использовать только при изучении планет и Луны. Это довольно крупные, яркие и близкие к нам астрономические объекты, поэтому высокократный телескоп покажет много деталей. А вот туманности и галактики – тусклые и сильно удаленные. При их изучении большее значение имеет светосила, зависящая от диаметра объектива телескопа, а кратность уже не так важна.

Выше мы привели две формулы для определения увеличения телескопа, и ими прекрасно можно пользоваться. Но рассчитать кратность телескопа можно и при помощи нашего калькулятора. Просто укажите основные технические параметры, и калькулятор быстро покажет вам все значения увеличений.

Наш интернет-магазин предлагает большой выбор телескопов с разным увеличением и разной комплектацией. В ассортименте представлены также и окуляры, и линзы Барлоу, которые позволяют изменить кратность оптической системы. Обращайтесь к нашим консультантам за помощью в выборе – мы отвечаем по телефону и по электронной почте.

Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.

Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.

Как узнать кратность телескопа. Смотреть фото Как узнать кратность телескопа. Смотреть картинку Как узнать кратность телескопа. Картинка про Как узнать кратность телескопа. Фото Как узнать кратность телескопа

Как узнать кратность телескопа. Смотреть фото Как узнать кратность телескопа. Смотреть картинку Как узнать кратность телескопа. Картинка про Как узнать кратность телескопа. Фото Как узнать кратность телескопа

Как узнать кратность телескопа. Смотреть фото Как узнать кратность телескопа. Смотреть картинку Как узнать кратность телескопа. Картинка про Как узнать кратность телескопа. Фото Как узнать кратность телескопа

Другие обзоры и статьи о телескопах и астрономии:

Обзоры оптической техники и аксессуаров:

Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:

Все об основах астрономии и «космических» объектах:

Источник

astro-talks

форум для любителей астрономии

Важные характеристики телескопов

Модератор: Ernest

Как узнать кратность телескопа. Смотреть фото Как узнать кратность телескопа. Смотреть картинку Как узнать кратность телескопа. Картинка про Как узнать кратность телескопа. Фото Как узнать кратность телескопа

Важные характеристики телескопов

Сообщение Ernest » 31 авг 2011, 12:04

Что такое увеличение телескопа?

Что такое апертура телескопа?

Что такое апертурная лихорадка?

Это естественное следствие из кардинального свойства апертуры ограничивать проницание и разрешение телескопа. Владелец менее апертурного телескопа, войдя во вкус наблюдательной астрономии, хочет сменить его на более апертурный (с большим диаметром линз/зеркала), чтобы иметь возможность увидеть больше. По ряду соображений, имеет смысл переходить на размер апертуры примерно в полтора раза больший, чем предыдущая. В некоторых случаях этот естественный ход событий приобретает клиническую форму, когда смена апертуры на большую происходит задолго до исчерпания возможностей наличного инструмента – просто как погоня за дюймами, не взирая на те трудности, с которыми придется столкнуться используя габаритный и тяжелый инструмент. Что и называют апертурной лихорадкой.

Что важнее увеличение телескопа или его апертура?

С каким максимальным увеличением я смогу наблюдать?

Обычно отвечают, что для этого надо умножить диаметр апертуры телескопа, измеренный в миллиметрах, на полтора или 40 апертур выраженных в дюймах. То есть для 10” инструмента (диаметр апертуры 254 мм) максимальное разумное составит около 400 крат.
Но тут надо отметить ряд обстоятельств. Это число не догма – обычно телескоп используется с меньшим увеличением подобранным для наблюдений того или иного класса объектов. Кроме того, при больших остаточных аберрациях объектива телескопа, плохой юстировке, неудачном климате места наблюдений (турбулентная атмосфера), тусклых объектах наблюдений, отсутствии часового ведения телескопа увеличения придется ограничивать меньшим, чем предельное, значением увеличением. При ярких объектах наблюдений, при проведении некоторым технических наблюдений (связанных с юстировкой телескопа или разрешением тонкой дифракционной структуры двойных звезд) неважной остроте зрения наблюдателя и надежном часовым двигателе монтировки, который отрабатывает компенсацию вращения Земли, вполне может оказаться полезным использование и несколько больших значений увеличений. Чем больше увеличение, тем меньше яркость изображения, меньше поле зрения телескопа, заметнее проявления дефектов оптики телескопа. И наоборот чем увеличение меньше, тем больше поле зрения телескопа, больше яркость изображения, оно выглядит более контрастным и резким.
см. также статью из ЧАВО «Какое максимальное увеличение имеет смысл для телескопа?»

Что такое разрешение телескопа?

Что такое проницание телескопа?

Что такое поле зрения телескопа?

Важна ли светосила для объектива телескопа?

Светосила объектива телескопа или его относительное отверстие (отношение диаметра апертуры к фокусному расстоянию) – важная характеристика для астрографа, телескопа используемого для производства фоторабот. Этот параметр (наряду со временем выдержки) определяет экспозицию при получении одного кадра. Чем светосила больше, тем меньшее время требуется для достижения той же экспозиции – того же уровня полезного сигнала на фотоматериале. Длительность выдержек при фотографировании широких звездных полей и туманностей обеспечивается довольно сложными системами слежения за суточным вращением неба, компенсацией несовершенства механики монтировки и поэтому для астрографа в ряде случаев важно уменьшить время выдержки и максимально увеличить светосилу объектива (без потерь в качестве изображения).
При визуальных наблюдениях в первом приближении светосила объектива телескопа не столь существенна. То насколько ярким глаз увидит изображения в телескоп, определяется не светосилой объектива, а размером выходного зрачка телескопа. Диаметр выходного зрачка равен диаметру апертуры объектива деленному на увеличение. То есть, чем больше увеличение, тем меньше выходной зрачок и тем меньше яркость изображения.
Светосила объектива телескопа косвенно определяет размер поля зрения. Чем светосильнее объектив телескопа – тем большее поле зрения возможно получить в пределах его окулярного тубуса или зафиксированном размере фотоприемника (кадра камеры). Кроме того как у визуального так и у фотографического астрономического телескопа (рефлектора или рефрактора) продольный размер трубы, обычно, тем меньше, чем больше относительное отверстие его объектива.

При фотоработах по широким полям (звездные поля, туманности, галактики и т.п.) относительное отверстие (отношение диаметра входной апертуры к фокусному расстоянию) выбирают побольше, чтобы получить лучшую проработку тусклых объектов (см. выше про важность светосилы). Но при стремлении к наивысшему проницанию по звездам требуется согласовывать относительное отверстие объектива и сумму его остаточных аберраций с размером пиксела фотоприемника. Вполне может статься, что меньшая светосила объектива даст лучшее проницание.
А вот для визуальных инструментов большее относительное отверстие объектива интересно постольку, поскольку позволяет получить большее поле зрения при том же размере фокусера (полевой диафрагмы обзорного окуляра).
При этом надо иметь ввиду, что большая светосила объектива обычно сопровождается большими остаточными аберрациями (как расчетными, так и ошибками производства, разюстирокой). Так что при желании достичь предельного разрешения (например, по планетам) лучше предпочесть телескопы с нефорсированным (небольшим) относительным отверстием объектива. Кроме того, в зеркальных системах большее относительное отверстие влечет за собой большее центральное экранирование, что также не добавляет контраста изображению на предельных увеличениях.

Фокусное расстояние телескопа

В окулярную трубку фокусера (фокусировщика) телескопа вставляют окуляры и проч. узлы. Двухдюймовый фокусер в любом случае лучше, хотя бы потому, что переходники для посадки 1.25″ окуляров и проч. аксессуаров в 2-дюймовый фокусер есть, а обратных переходников (во всяком случае без потерь в поле зрения) – нет. 2-дюймовый фокусер предоставляет больше свободы в выборе окулярных аксессуаров. Особенно важно иметь больший диаметр окулярной трубки фокусера в астрографе. Но 2″ аксессуары дороже и габаритнее.
см. также статью из ЧАВО «2» или 1.25″?»

В телескоп все видно вверх ногами?!

Среди астро-товаров, как и в мире всех прочих гаджетов, есть особенно дорогие, в том числе с карбоновыми трубами. Первоисточник этого карбона – стремление создать трубу астрографа минимально подверженную уходу фокуса из-за температурного дрейфа в процессе съемки. Масляная иммерсия между линзами апохромата позволяет увеличить размер «склейки» против допустимых при традиционном способе склеивания и получить все преимущества склеенного блока – минимальные возможности для разъюстировки, потерь света и т.п.

Это возможность сочетать быструю перефокусировку с точной высокочувствительной подстройкой фокуса на больших увеличениях, что особенно актуально для светосильных телескопов.

Что ограничивает мобильность телескопа?

Обычная схема астрономических наблюдений с выездом за город – вынос из дома к автомобилю частей телескопа (труба, монтировка, тренога), сумки или чемоданчика с аксессуарами (окуляры, фильтры, карты, фонарь), расфасовка всего этого добра по салону и в багажник, а по прибытии на место наблюдения вдали от городских огней сборка телескопа.
При таком подходе мобильность ограничена только весом и габаритом самой тяжелой и габаритной из частей телескопа, размерами дверных проемов, дверей в лифте, объемом багажного отделения (а то и прицепа) автомобиля, силой и количеством рук наблюдателя и его помощников, трудоемкость сборки/разборки телескопа на части.

Можно ли будет перевозить телескоп на автомобиле?

Да – это наиболее обычный способ доставить телескоп к месту наблюдений для жителей больших городов.

Каковы примерные размеры телескопов?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *