Как узнать длину отрезка
Длина отрезка
Для того, чтобы найти длину отрезка, его сравнивают с отрезком принятым за единицу измерения, который носит название единичный отрезок.
Если за единицу измерения принять сантиметр, то, чтобы определить длину отрезка, нужно узнать сколько раз в этом отрезке укладывается сантиметр. На рис.1 в отрезке СD сантиметр укладывается ровно три раза, значит, длина отрезка СD равна 3 см, можно записать СD = 3 см. В данном случае, для измерения удобно использовать сантиметровую линейку.
Бывает, что единичный отрезок не укладывается целое число раз в измеряемый отрезок, тогда единичный отрезок делят на 10 равных частей и определяют сколько раз одна десятая часть укладывается в остатке измеряемого отрезка. На рис.2 в отрезке СВ сантиметр укладывается 2 раза и в остатке 3 раза укладывается одна десятая часть сантиметра, значит, длина отрезка СВ равна 3,3 см или, учитывая что для сантиметра десятая часть равна миллиметру, 3 см 3 мм, т.е. можно записать СВ = 3,3 см (СВ = 3 см 3 мм).
Может получится так, что и в миллиметрах остаток не укладывается целое число раз, тогда:
За единицу измерения можно принимать не только сантиметр, но и другие отрезки, например, дециметр, метр и т.д.
Свойства длин отрезков:
Поделись с друзьями в социальных сетях:
Урок 3 Бесплатно Отрезок. Длина отрезка
Начнем знакомство с одним из разделов математики, который называется геометрия.
Становление данной науки происходило тысячелетиями.
Сегодня обратим внимание на основные, базовые геометрические фигуры, такие как точка и отрезок.
Узнаем, что называют ломаной линией, какие геометрические фигуры называют многоугольниками, рассмотрим их основные элементы и характеристики.
Научимся сравнивать, находить длины отрезков.
Познакомимся с различными единицами измерения отрезков.
Рассмотрим свойства измерения длин отрезков.
Отрезок
Геометрическая фигура- это математическая модель, в которой рассматривается только форма и размер, не обращая внимания на иные свойства и состояния (цвет, из какого материала изготовлены, в каком состоянии находятся).
Как здания складываются из кирпичиков, так и сложные геометрические фигуры состоят из базовых фигур.
Одной такой элементарной фигурой является точка.
В реальности моделью, которая дает представление о точке может стать, например, след, оставленный острием карандаша, или отверстие на бумаге от швейной иглы.
Слово «точка» с латинского языка означает мгновенное касание, укол.
Точку принято рассматривать как некоторое место в пространстве или на плоскости.
Принято обозначать точки заглавными латинскими буквами (А, В, С и т.д.).
Две точки на плоскости можно соединить бесконечным множеством линий.
Самой короткой линией, соединяющей две точки на плоскости, будет прямая, проведенная по линейке через эти две точки.
Кратчайшая линия между двумя точками называется отрезком.
Любые две точки можно соединить только одним отрезком.
Точки, ограничивающие отрезок, называются концами отрезка.
Отрезок обозначают указанием имен его концов.
Через точки А и В с помощью линейки провели прямую.
Так как отрезок обозначают именами точек, получим отрезок АВ или ВА.
Пишут и говорят так: «Отрезок АВ» или «Отрезок ВА».
В названии отрезка не важно в каком порядке указываются его концы.
Отрезок можно построить с помощью линейки.
Для этого необходимо к отмеченным на плоскости точкам приложить линейку и провести прямую от одного конца отрезка до другого.
Чтобы с помощью линейки начертить отрезок, который длиннее чем сама линейка, нужно поступить следующим образом:
Между точками А и В отметить точку С.
Затем передвинем линейку так, чтобы левый конец линейки оказался около точки С, по правому концу линейки отложим точку D.
Последовательно соединив концы отрезков, получится отрезок AD, который длиннее, чем линейка.
У меня есть дополнительная информация к этой части урока!
Давайте разберемся, как могут располагаться точки по отношению к отрезку:
1. Точка лежит на отрезке.
Говорят: «Точка G принадлежит отрезку ».
Записывают это так: G ∈ AB
2. Точка не лежит на отрезке.
Говорят: «Точка не принадлежит отрезку ».
Записывают это так: R ∉ AB
Пройти тест и получить оценку можно после входа или регистрации
Длина отрезка
Каждый отрезок имеет определенную длину, значение которой является числом.
Так как каждый отрезок имеет длину, отрезки можно измерять и сравнивать.
Существует несколько способов сравнения отрезков.
1. Приблизительный способ сравнения.
Данный способ сравнения применяют только в том случае, когда длины отрезков явно отличаются.
Пример: Даны два отрезка АВ и ЕР
Очевидно, что отрезок АВ длиннее отрезка ЕР, значит, АВ > ЕР
Метод заключается в следующем: совмещаются два отрезка друг с другом так, чтобы совпали их концы с одной стороны.
По расположению других концов относительно друг друга можно оценить какой из отрезков длиннее, а какой короче.
Если при наложении отрезков друг на друга длины отрезков совпадут, то отрезки равны (отрезки в этом случае будут равными фигурами).
Если при наложении отрезков друг на друга один из отрезков будет составлять часть второго, то первый отрезок является короче второго (т.е. длина первого меньше длины второго).
Пример: Даны два отрезка АВ и ОЕ
Сравним данные отрезки методом совмещения отрезков.
Совместим левый конец А отрезка АВ и левый конец О отрезка ОЕ.
Можно заметить, что отрезок ОЕ составляет часть отрезка АВ.
Значит, отрезок ОЕ короче отрезка АВ.
Данный метод удобен, если есть возможность перемещать отрезки, совмещать один с другим.
3. Сравнение отрезков с помощью измерителя.
Если нет возможности перемещать сравниваемые отрезки, то можно использовать промежуточный измеритель.
В математике для этих целей используют специальный чертежный инструмент, который называется циркулем.
Чтобы сравнить отрезки с помощью циркуля, необходимо совместить концы отрезка с ножками циркуля.
Не меняя раствор циркуля, приложить его ко второму отрезку и сравнить.
Если нет возможности сравнить отрезки наложением и нет циркуля под рукой, то в качестве измерителя можно использовать нитку.
В таком случае нужно нитку приложить к исходному отрезку, на нитке по отрезку сделать замер, затем нитку приложить ко второму отрезку, оценить расположение замера на нитке по отношению к исследуемому отрезку, сделать вывод.
Пусть даны три отрезка СD, АЕ, BG
Сравним эти отрезки с помощью циркуля.
Соединим ножки циркуля с концами С и D отрезка СD.
Приложим циркуль с заданным раствором к отрезку АЕ.
Концы измерителя совпали с точками отрезка АЕ, значит, отрезки CD и AE равны: (CD = AE).
Приложим циркуль с заданным раствором к отрезку BG.
Отрезок выходит за концы измерителя, т.е. является частью отрезка BG, следовательно, отрезок BG длиннее отрезка СD: (BG > СD).
Все рассмотренные способы сравнения длины отрезков проводят без определения значения длины сравниваемых отрезков.
4. Существует еще один способ сравнения длины отрезков путем измерения их длинны.
Для этого необходимо сначала измерить длину каждого отрезка, далее сравнить полученные значения их длины и сделать вывод.
Большим будет являться тот отрезок, длина которого больше.
Соответственно, если длины измеряемых отрезков равны, то и отрезки равны.
У меня есть дополнительная информация к этой части урока!
Ломаная линия
Если последовательно соединить отрезки так, чтобы конец одного отрезка являлся началом следующего (при этом соседние отрезки не лежат на одной прямой), то образуется геометрическая фигура, которая называется ломаной линией.
Отрезки, из которых состоит ломаная линия, называют звеньями.
Концы отрезков называют вершинами ломаной.
Самые крайние вершины ломаной называют концами ломаной
Обозначение ломаной линии составляют из названий вершин этой ломаной, называя их по порядку.
Длиной ломаной называется сумма длин всех ее звеньев.
На рисунке изображена ломаная линия АBCDE.
Вершины ломаной АBCDE: А, B, C, D, Е.
Звенья ломаной АBCDE: AB, BC, CD, DE.
Найдем длину ломаной АВСDE:
АВСDE = AB+ BC+ CD+ DE = 2 см + 3 см + 4 см + 5 см = 14 см
Ломаная, концы которой совмещаются, называется замкнутой.
Многоугольником называется фигура, ограниченная замкнутой ломаной линией, звенья которой не пересекаются.
Отрезки (звенья) ломаной линии называют сторонами многоугольника.
Общие точки двух отрезков (сторон) многоугольника называют его вершинами.
Каждая пара сторон многоугольника, сходящиеся в одной точке, образуют углы многоугольника.
Количество сторон и количество углов в многоугольнике совпадают.
Вершины, стороны и углы многоугольника обозначаются аналогично ломаной линии.
Многоугольник принято обозначать и называть по его вершинам, начиная с любой вершины и называя их последовательно, в любом порядке.
На рисунке изображен многоугольник АBCDEF.
Вершины многоугольника АBCDEF: А, B, C, D, Е, F.
Стороны многоугольника АBCDEF: AB, BC, CD, DE, EF, FA.
Любые многоугольники можно сравнить: два многоугольника называются равными, если они совпадают при наложении.
Зная длину каждой стороны многоугольника, можно найти периметр этого многоугольника.
Периметр многоугольника принято обозначать заглавной латинской буквой Р
Найдем периметр многоугольника АBCDEF (изображенного на рисунке):
РАВСDEF = AB+ BC+ CD+ DE+ EF+ FA = 2 см + 3 см + 2 см + 2 см + 3 см + 2 см = 14 см.
Существует огромное множество различных видов многоугольников.
Обычно многоугольники различают по числу сторон и углов.
Многоугольник с наименьшим числом вершин, сторон и углов называют треугольником.
Треугольник часто обозначают символом «Δ» и тремя заглавными латинскими буквами, которые обозначают его вершины.
На рисунке изображен треугольник АBC (Δ АBC).
Отрезки AB, BC, АC— стороны треугольника АBC.
Периметр треугольника- это сумма длин трех его сторон.
Найдем периметр треугольника АBC (изображенного на рисунке):
РАВС = AB+ BC+ АС = 4 см + 6 см + 3 см = 13 см.
Пройти тест и получить оценку можно после входа или регистрации
Длина отрезка
Длину отрезка можно также назвать расстоянием между концами отрезка.
Отрезок измеряется линейкой и длина указывается в сантиметрах, например, AB = 6 см (посмотрите внимательно из-за чего так произошло на рисунке).
Поэтому отрезки удобнее измерять с нулевой отметки на линейки. Так вы сразу получаете значение равное длине отрезка.
Отрезок может измеряться и десятыми долями сантиметра (миллиметрами), это записывается так: DC = 5,7 см
Если отрезок разделен точкой, то сумма получившихся отрезков будет равна всей длине отрезка. AB = 2 см, BC = 3 см, тогда AC = 5 см
В качестве единиц измерения отрезков можно взять:
1 метр (м) = 10 дециметров (дм) = 100 сантиметров (см) = 1000 миллиметров (мм)
1 дециметр (дм) = 10 сантиметров (см) = 100 миллиметров (мм)
1 сантиметр (см) = 10 миллиметров (мм)
И другие величины (мили, футы, аршины,…)
Редактировать этот урок и/или добавить задание Добавить свой урок и/или задание
Добавить интересную новость
Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников
При правильном ответе Вы получите 1 балл
В каких единицах обычно измеряют отрезки в геометрии?
Выберите всего один правильный ответ.
Добавление комментариев доступно только зарегистрированным пользователям
Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.
28.01.17 / 22:14, Иван Иванович Ответить +5
Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.
28.01.17 / 22:14, Иван Иванович Ответить +5