Как узнали температуру солнца
Как измерили температуру Солнца
Спектр любого твердого тела, нагретого до любой температуры, можно измерить спектрометром. Этот прибор представляет собой слегка измененный спектроскоп.
В фокальной плоскости линзы L2 установлена пластина с узкой вертикальной щелью В (см. Откуда берется цвет? ). Если трубу D поворачивать вокруг вертикальной оси, то через щель В будет проходить свет только узких участков сплошного спектра. Перед щелью А коллиматора установлена лампа накаливания, а за щелью В — болометр: очень тонкая, зачерненная металлическая полоска, которая одинаково поглощает световые лучи с любой длиной волны.
Чем больше энергии излучения поглощает болометр, тем сильнее он нагревается и тем больше становится его электрическое сопротивление. Электрическое сопротивление болометра легко измерить и тем самым определить, какую энергию испускает нить лампы в различных участках спектра.
Попытаемся построить график, в котором будет отражено, как зависит энергия, излучаемая 1 см 2 абсолютно черного тела, от длины волны (рис. 10). В излучении абсолютно черного тела невозможно обнаружить энергию, соответствующую излучению волны со строго определенной длиной. Поэтому приходится измерять энергию излучения в каком-то узком участке спектра, например в диапазоне от λ 1 до λ 2. Если эту энергию разделить на ширину участка λ 2— λ 1 ,то определится излучательная способность ελ
Предположим, мы построили график зависимости (рис. 11) для тела, нагретого до 6000° К (фотосфера Солнца). Самое большое значение el будет при длине волны λ m=0,5 мк. В обе стороны от этой точки регистрируемая в спектрометре энергия будет убывать. Будем двигаться к красной границе солнечного спектра. Уже в области 0,7—0,75 мк красный цвет переходит в темноту. Но и в темных участках болометр будет показывать, что энергия продолжает поступать. Значит, на красной границе спектр Солнца не заканчивается, хотя излучения с длиной волны больше 0,75 мк человеческий глаз не воспринимает.
Здесь начинаются невидимые инфракрасные лучи — инфракрасная область оптического спектра. Инфракрасное излучение примерно в области 500 мк переходит в диапазон радиоволн (см. ст. «Радио»).
То же происходит и на другом конце спектра. За фиолетовыми лучами в области волн в 0,4 мк начинается невидимое ультрафиолетовое излучение, которое где-то около волн в 0,002 мк переходит в рентгеновские лучи (см. Откуда берется цвет? ). Спектральные области наиболее коротких ультрафиолетовых лучей и наиболее длинных рентгеновских лучей накладываются друг на друга.
Инфракрасную область света излучают спектрометром, призма которого изготовлена из кристалла каменной (поваренной) соли. Даже специальные сорта стекла (тяжелый флинт) полностью поглощают инфракрасное излучение, начиная с волн длиной в 2,7 мк. А каменная соль пропускает это излучение с длиной волны до 13,5 мк. В инфракрасном спектрометре вместо линз поставлены вогнутые металлические зеркала, хорошо отражающие инфракрасные лучи.
Ультрафиолетовое излучение исследуют с помощью оптических деталей из кварца или флюорита. Кварц слабо поглощает это излучение до волны в 0,18 мк, а флюорит — до 0,12 мк.
Поместим перед спектрометром с призмой из каменной соли абсолютно черное тело, у которого температура внутренних стенок полости равна 100° Ц. Такое тело не светится даже в полной темноте, но болометр, установленный у выходной щели спектрометра, позволяет и в этом случае определить зависимость ε λ от длины волн. Максимум излучательной способности тела, нагретого до 100°Ц, соответствует длине волны в 7,8 мк. Опыты показали: чем выше температура полости, тем короче должна быть длина волны λ m (рис. 10). Величина λ m как бы смещается с ростом температуры в сторону более коротких волн.
В результате этих опытов и некоторых теоретических соображений немецкому физику Вильгельму Вину удалось вывести формулу, которая теперь называется законом смещения Вина: λ mТ = 2897 мк•°К. Если в эту формулу подставить λ m в микронах, определится величина Т — температура излучающего нагретого тела в градусах Кельвина. С помощью спектроскопа можно измерить температуру любого тела, даже температуру Солнца или звезды.
Иначе, как с помощью спектрометра, узнать температуру Солнца невозможно. Нельзя же установить на Солнце термометр! Но, допустим, мы как-то добыли кусочек Солнца. Из какого же материала сделать термометр? Даже самый тугоплавкий металл — вольфрам плавится при 3000°К. Поэтому температуру Солнца можно определить только измерением λ m. Так же определяется температура звезд, а в земных условиях — температура сильно нагретых тел, например раскаленной плазмы (см. ст. «Сто миллионов градусов»).
Какая температура Солнца
Космическое пространство содержит огромное количество звёзд с разными характеристиками. Для землян самым основным светилом является Солнце. Оно даёт энергию, греет и радует душу. Но какова температура Солнца? Ответ на этот вопрос будет изучен в статье.
Интересные факты
В составе звезды присутствуют следующие элементы:
Если бы этой звезды не существовало, жизни на Земле не было бы и не могло бы быть. Наши предки осознавали, насколько их жизнь зависит от «поведения» светила, поэтому нередко поклонялись ему и сравнивали его с божеством. С тех пор это стало существенным поводом для того, чтобы начать детальное изучение этого «огненного шара».
Изображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode. Получено 12 января 2007 года.
Многочисленные исследования, проведённые в научном мире, позволяют современным изыскателям заглянуть в далёкое прошлое. Возраст Солнца составляет 5 млрд. лет. Есть мнение, что спустя 4 млрд. лет его свечение станет более ярким, нежели сегодня. Науке также известен термин «солнечный цикл», которым характеризует минимальную и максимальную активность звезды Солнечной системы. В рамках нескольких последних циклов этот показатель увеличился на 0,1%.
О температурных значениях
Температура Солнца, особенно в центральной части звезды, является крайне высокой. Её значение составляет 14 млрд. градусов. Дело в том, что в ядерной части светила наблюдаются существенные термические реакции, при которых происходит деление ядер в условиях повышенного давления. Это провоцирует выделение одного ядра и вместе с ним огромного количества энергии.
Если изучать вопрос, какая температура на Солнце, с логической точки зрения, по мере углубления она должна становиться всё больше и больше, и происходит это резко. Однако определить точные показатели можно только в теории. Если рассматривать эти колебания послойно, можно сделать следующие отметки:
Но это неточный ответ на вопрос, какая температура на Солнце. Дело в том, что в настоящее время большое количество учёных из разных стран мира занимаются проведением исследований, в отношении определения строения светила. В земных условиях они не прекращают попыток формирования явления термоядерного синтеза для получения информации о поведении плазмы в естественных условиях.
Снимок Солнца 9 апреля 2013 года. Иллюстрация NASA/SDO.
Атмосферные особенности
Относительно невысокая в сравнении с ядром и короной температура на поверхности Солнца вызывает ещё больше вопросов, нежели ответов. Есть ли у звезды атмосфера? И каковы её условия?
На самом деле, толщина этого слоя составляет 500 км и именуется как фотосфера. В ней регулярно происходят конвекционные процессы. Вследствие их течения тепловые потоки постепенно переходят в фотосферу из самых низких ярусов. Солнце способно вращаться, но делает это не так, как любая другая планета, обращающаяся вокруг него. Оно является нетвёрдым, что создаёт определённые особенности его вращения. Аналогичные траектории и эффекты можно наблюдать у газовых гигантов.
Условия в фотосфере
Изучая вопрос, какая температура на поверхности Солнца, стоит изучить данный аспект. В фотосфере её среднее значение приравнивается к отметке 5,5 тыс. градусов по Цельсию. В таких условиях радиация превращается в видимый свет. Что касается пятен, они являются более холодными и тёмными, нежели в области, которая их окружает. В центральной части температурный режим может становиться более «щадящим», т. е. опускаться на несколько тысяч единиц.
Условия в хромосфере
Температура Солнца в градусах присутствует и в области хромосферы. Она представляет собой следующий атмосферный уровень, который считается более холодным и имеет температурный показатель в 4320 градусов. В связи с тем, что она включает в состав внушительное количество водорода, с виду кажется красной. Повышение температуры происходит в короне, которая может быть обнаружена при затмении, во время протекания плазмы наверх.
Показатель мощности Солнца составляет 386 млрд. мегаватт. Ежесекундно, даже в течение каждой секундной доли происходит превращение водорода в гелий и энергию (гамма-лучи). Наряду с этим происходит испускание потока низкой плотности, который именуется солнечным ветром и распространяется по всем сопровождающим Солнце планетам на скоростном режиме в 450 километров в секунду. В итоге потоки текут в космос и направляются, в том числе, в сторону Земли.
Таким образом, в статье было рассмотрено, какая температура Солнца в градусах в разных его частях и в основных атмосферных слоях.
Какая температура на Солнце, сколько оно весит, что случится с Землей, когда Солнце станет красным гигантом и другие интересные факты
Солнце – ближайшая звезда к Земле. Это также и источник жизни на планете. На заре развития цивилизаций у многих народов именно бог Солнца был самым главным, а все другие божества только подчинялись ему. Характерно, что мифы разных народов по своему объясняли происхождение дневной звезды и ее роль. Сегодня же, в ХХI веке, астрономия может рассказать о Солнце куда больше, чем древние мифы. Поэтому в статье мы расскажем что же происходит внутри звезды и, самое главное: что же будет с ней спустя миллионы лет.
Общая характеристика
Характеристики Солнца важны для понимания его места среди других подобных светил. Солнце являет собой огромный газовый шар, нагретый до невообразимо высоких температур. Диаметр Солнца – 1 млн. 392 тыс. 700 км. Эта величина в 109 раз больше земной. Масса Солнца внушительна и составляет около двух нонниллионов килограмм (1,98⋅1030 кг). Это в 332 946 раз больше земной массы. Интересно, что на массу всех планет, спутников, астероидов, комет, межпланетного газа и пыли, находящихся в Солнечной системе, приходится всего лишь 0,13%. Плотность Солнца несколько больше воды и равна 1,4 г/см3.
Мы наблюдаем Солнце как диск желтого цвета, но на самом деле оно так не выглядит. Звезда излучает белый цвет. Однако у поверхности Земли Солнце выглядит как диск желтого оттенка из-за рассеивания в атмосфере и поглощения части излучения.
В Млечном пути находятся сотни миллиардов таких же звезд, подобных Солнцу. Самая близкая к нашей планете звезда – Проксима Центавра находится на расстоянии свыше четырех световых лет (или около 40 трлн. км).
Солнце – это звезда класса «желтый карлик» — G2V. Это значит, что во Вселенной есть гораздо большие звезды. Так, в Галактике есть объекты, радиус которых в 2 тыс. раз больше солнечного. Радиус Бетельгейзе – ближайшего к нам красного сверхгиганта больше солнечного примерно в 1200 раз.
Если изобразить схему Солнечной системы и поместить внутри нее Бетельгейзе, то она будет простираться до орбиты Юпитера.
Расстояние до Солнца от Земли в среднем составляет 150 млн. км — оно равняется одной астрономической единице. Видимый угловой диаметр для наблюдателя с земной поверхности немногим превышает половину градуса. Звезда находится примерно в 26 тыс. световых лет от центра Млечного Пути. Скорость вращения Солнца вокруг центра галактики – 230 километров в секунду.
Источник тепла и света Солнца – термоядерные реакции. После слияния четырех протонов образуется один атом гелия и энергия. В недрах Солнца происходят и другие реакции, в результате которых, например, образуются атомы металлов.
Приблизительно до 150 астрономических единиц в космосе доминирует так называемый солнечный ветер.
Солнце обращается вокруг своей оси. Вращение это неодинаково. В районе экватора звезда делает один оборот за 25 суток, а в районе полюсов – за 34 суток.
Главные характеристики Солнца
Основные физические характеристики Солнца такие.
Значение | Основные характеристики |
Диаметр Солнца в километрах | 1 миллион 392 тыс. |
Протяженность экватора | 4,37 млн. км |
Масса | приблизительно 2•1027 тонн |
Площадь поверхности | 6 трлн. кв. км |
Объем Солнца | 1,41•1018 км³ |
Температура поверхности | 6000 °С |
Температура в центре Солнца | 15 700 000 °С |
Экваториальный период вращения вокруг оси | 25 суток |
Период вращения вокруг оси на полюсах | 34 суток |
Наклон оси вращения к эклиптике | 7,25° |
Наименьшее удаление до Земли (перигелий) | 147,098 млн. км |
Наибольшее удаление до Земли (афелий) | 152,098 млн. км |
Вторая космическая скорость | 617 км/с |
Ускорение свободного падения | 274 м/с2 |
Мощность излучения | 3,828•1026 ватт |
Состав Солнца
Солнце состоит из водорода (на его долю приходится свыше 73 % массы) и гелия (около 25%). Другие вещества присутствуют в ничтожном количестве (около 1,5%). В числе этих полутора процентов – азот, кислород, железо, никель, магний и проч. Химический состав Солнца постоянно изменяется по причине постоянно происходящих реакций ядерного синтеза. Массовая доля водорода неуклонно уменьшается, превращаясь в гелий. Гелий также «выгорает», превращаясь в более тяжелые химические элементы.
Строение Солнца
Ошибочно мнение, будто дневная звезда состоит только из одного разогретого вещества. Строение Солнца довольно сложное. В нем различают шесть слоев. Причем 3 из них внутренние, а 3 образуют так называемую атмосферу. Узнаем подробнее, из чего состоит Солнце.
Внутренние слои Солнца
Внутреннее строение Солнца долгое время было загадкой для астрономов. Только в ХХ веке ее удалось разгадать. Внутри Солнца находятся следующие слои.
Это центральная часть звезды. Здесь происходят реакции ядерного синтеза. Радиус ядра – примерно 150 тыс. км.
Температура внутри Солнца доходит до невообразимых 15 миллионов градусов Кельвина. Давление же здесь составляет около 300 миллиардов атмосфер (свыше 30 000 трлн. Па). Из-за этого плотность солнечного ядра достигает 150 кг/см3 (что в 6,67 раз больше наиболее тяжелого металла на Земле – осмия).
Указанные параметры идеально подходят для реакций ядерного синтеза. Именно здесь появляется энергия, необходимая для поддержания жизни всего живого на нашей планете. Все другие участки Солнца имеют высокую температуру из-за перехода энергии из ядра. Сами они эту энергию не продуцируют.
Зона лучистого переноса
Ее еще называют зоной радиации. Она находится непосредственно над ядром. Радиус внешней границы лучистого переноса составляет 490 тыс. км. Температура медленно снижается до 2 миллионов градусов. Из-за снижения температуры уменьшается давление, в результате чего плотность солнечного вещества достигает 0,2 г/ см3. Конвекционного перемещения в этой зоне нет.
Энергия в зоне лучистого переноса распространяется путем постоянных поглощений, излучений фотонов протонами. Частицы могут двигаться в любом направлении. Этот процесс довольно медленный: из ядра фотон выходит наружу приблизительно 170 тысяч лет. Иными словами, мы сейчас видим свет, образовавшийся на Солнце, когда на Земле была ледниковая эпоха.
Зона конвективного переноса
Толщина конвективной зоны составляет около 200 тыс. километров. Плотность вещества здесь уже невелика, и оно активно перемещается. То есть разогретое вещество интенсивно поднимается вверх, отдает тепло, охлаждается и идет вниз. Скорость конвекции доходит до 6 километров в час. Эти процессы способствуют образованию солнечного магнитного поля.
На поверхности температура Солнца достигает 6 тысяч градусов, а вот плотность примерно в 1000 раз ниже, чем у земной атмосферы.
Солнечная поверхность неоднородна и имеет области с меньшей яркостью. Они называются пятнами. Продолжительность существования пятен – несколько дней. Интересно, что на Солнце могут быть пятна, которые превышают диаметр Земли. На поверхности Солнца также существуют:
Данные современных исследований показывают, что значение конвективных переносов чрезвычайно высоко. Именно в конвективной зоне происходят всевозможные движения солнечного вещества.
Строение Солнца
Атмосфера
Когда говорят об атмосфере Солнца, как правило, выделяют следующие 3 слоя: фотосферу, хромосферу и корону.
Фотосфера
Это самый нижний слой солнечной атмосферы. Это та область, которую мы видим с Земли, ведь Солнце излучает свет и тепло, распространяющиеся на все объекты в Солнечной системе. Толщина этого участка атмосферы – до 400 км.
Из фотосферы, или внешней излучающей поверхности Солнца на Землю попадает большинство излучения. Лучи из глубоко расположенных слоев к нам не поступают. Температура фотосферы снижается с 6000 градусов Кельвина до 4400. Эффективная температура рассчитывается по закону Стефана-Больцмана: мощность излучения абсолютно черного тела прямо пропорциональна температуре тела, возведенной в четвертую степень.
Фотосфера являет видимую поверхность нашей дневной звезды. По ней мы можем определить размеры Солнца и прочие параметры.
Хромосфера
Этот слой расположен над фотосферой. Толщина солнечной хромосферы составляет около 2 тыс. км. С Земли ее наблюдать довольно сложно из-за незначительной яркости. Хромосфера доступна земному наблюдателю во время солнечного затмения. В это время она светится красным светом.
Цвет хромосферы – красный. Название «хромосфера» произошло, по-видимому, от ее цвета. Красный оттенок объясняется тем, что в спектре преобладает линия излучения водорода серии Бальмера.
В толщи этого слоя наблюдаются спикулы – плазменные столбы, которые выбрасываются из нижних слоев. Длина одного такого столба может достигать 20 тыс. км. По мере возрастания высоты температура хромосферы возрастает и достигает 20 тыс. градусов на верхней границе.
Корона
Это самый верхний слой солнечной атмосферы. Ее границы не определены. Солнечная корона характеризуется наличием крайне разреженного вещества. Температура этой области достигает нескольких миллионов градусов. В отдельных ее участках температура может достигать 20 миллионов градусов.
Солнечная корона видна только при полном затмении. Это объясняется тем, что плотность ее вещества крайне мала, а, следовательно, яркость слоя незначительна. Форма короны изменяется зависимо от фазы цикла. В максимум активности она приближается к кругу, а в минимум – вытягивается. Солнечная корона излучает ультрафиолетовые и рентгеновские лучи.
Строение атмосферы Солнца таит в себе много загадок. На сегодня неизвестно, почему температурные показатели солнечной короны достигают столь высоких значений. В короне иногда можно обнаружить протуберанцы. Высота одного такого «факела» может превышать полтора миллиона километров.
Огромный протуберанец в форме Эйфелевой башни был зафиксирован в 2015 году. Он был высотой в несколько диаметров Земли и просуществовал около двух дней.
Источник: NASA GODDARD
Магнитное поле
Солнце имеет собственное магнитное поле. Различают глобальное и несколько локальных полей.
Глобальное магнитное поле Солнца имеет цикличность примерно в 11 лет. С ней связаны изменения частоты появления пятен. Это явление называется «цикл Швабе». Этот ученый еще в 19 веке приметил, что число пятен на поверхности Солнца подвержено периодическим изменениям. Несколько позже стало очевидно, что такие изменения связаны с колебаниями магнитного поля. Следовательно, необходимо два 11-летних цикла, чтобы состояние возвратилось к прежнему. Этот 22-летний цикл называется «цикл Хейла».
Кроме того, в различных участках Солнца наблюдаются локальные магнитные поля разной интенсивности. Их параметры могут быть разными. Редко когда время существования такого магнитного поля превышает 10 дней. Локальные поля чаще всего обнаруживаются возле солнечных пятен.
Горячая плазма показывает линии магнитного поля, выходящие из активных областей Солнца.
Источник: NASA GODDARD
Жизненный цикл Солнца
Эволюция Солнца – вопрос, интересующий не одно поколение астрономов. Ученые оценивают возраст Солнца в 4,5 миллиарда лет. Оно возникло из газопылевого облака, сжимающегося под воздействием сил гравитации. Из такого же облака возникли и все остальные объекты Солнечной системы, в том числе и наша планета. Из-за сжатия начинает возрастать плотность и температура. Когда температура и давление возросли до необходимых значений, начались термоядерные реакции. Так, собственно, и начался жизненный цикл Солнца.
Масса нашей дневной звезды постепенно снижается из-за реакций ядерного синтеза. Ежесекундно 4 миллиарда тонн вещества Солнца превращается в энергию. Однако запасов водорода для поддержания протекания протон-протонной термоядерной реакции хватит на несколько миллиардов лет.
Температура светила увеличивается на 10 процентов каждые 1,1 млрд. лет. Это дает основания предположить, что раньше температура воздуха на планете была ниже, а на Венере, вероятно, могла бы существовать вода в жидкой фазе (сейчас температура Венеры такова, что на ней может плавиться свинец). Поскольку в будущем светимость Солнца будет возрастать, это приведет к увеличению температуры на Земле. Из-за высокой температуры испарятся океаны, молекулы воды, увлекаемые движением, улетучатся в космическое пространство и разложатся на атомы кислорода и водорода, а сама Земля превратится в безжизненное космическое тело.
Жизненный цикл Солнца
Из-за уменьшения количества водорода на Солнце будет уменьшаться ядро. Но сама звезда «раздуется». Примерно через 6,5 млрд лет водород на Солнце выгорит. Однако ядерные реакции синтеза на этом не остановятся: начнет выгорать гелий, причем этот процесс будет происходить не в ядре, а в оболочке Солнца. Вследствие этого размеры Солнца увеличатся, и оно достигнет орбиты Земли. В этой стадии оно будет красным гигантом.
Однако рано или поздно выгорит гелий. Это произойдет примерно за 110 миллионов лет. В результате пульсаций внешние слои Солнца постепенно отделятся от ядра. Солнечное ядро превратится в белый карлик, и его диаметр будет примерно соответствовать нынешнему земному. Это при том, что масса ядра будет только вдвое меньше нынешнего Солнца.
Белый карлик будет медленно охлаждаться. В этом объекте не протекают ядерные реакции. Приблизительно через 10 миллиардов лет из Солнца останется черный карлик.
Орбита и место расположения Солнца в галактике Млечный Путь
Солнце, как и вся Солнечная система, обращается вокруг центра Млечного пути. В этом центре расположена большая черная дыра. Солнечная система совершает оборот вокруг этого центра приблизительно за 250 миллионов лет.
Расположение Солнечной системы в галактике Млечный путь
Солнце и Солнечная система, а также наша галактика находятся в рукаве Ориона. Скорость вращения галактики равна скорости вращения спиральных рукавов. Из-за этого Солнечная система не попадает под их влияние. Спиральные рукава излучают лучи, уничтожающие все живое на планете.
Солнечный ветер
Так называется поток ионизированных частиц, исходящих от Солнца. Его скорость может достигать 1200 километров в секунду. Потоки солнечного ветра пронизывают все пространство Солнца. Состав частиц в солнечном ветре – протоны, электроны и альфа-частицы.
Существует медленный и быстрый солнечный ветер. Медленный ветер движется со скоростью примерно 400 км/ч и нагрет примерно до полутора миллионов градусов. Его состав примерно отвечает солнечной короне. Быстрый ветер движется с большей скоростью, имеет более низкую температуру, его плотность вдвое выше.
Распространение солнечного ветра
Ежесекундно Солнцем излучается примерно 1,3⋅1036 частиц, уносимых солнечным ветром. Следовательно, за год звезда теряет в массе примерно 2⋅10−14 массы. На Земле регулярно происходят природные явления, которые связаны с распространением солнечного ветра и его возмущениями (например, магнитные бури и северные сияния).
Солнечные циклы и активность
Солнечная активность – это совокупность явлений, связанных с образованием сильных магнитных полей. Их проявление видно в фотосфере как солнечные пятна. Магнитные поля провоцируют вспышки, потоки быстрых частиц, корональные выбросы, возмущения в солнечном ветре, изменения электромагнитного излучение, потоков космических лучей. На Земле эти поля провоцируют магнитные бури и другие явления.
Показателем уровня активности Солнца является число Вольфа. Оно показывает количество пятен на видимой с Земли части звезды. Оно меняется с периодом примерно 11 лет. За последние 300 лет длительность цикла находился в более широких пределах. Им приписывают последовательные номера. В декабре 2019 года начался 11-летний цикл, который продлится предположительно до 2030 года.
Ученые определяют также 22-летний цикл. Фактически, это изменение полярности магнитного поля. Вековой цикл длится примерно 70 – 100 лет. Наконец, радиоуглеродный анализ указывает на наличие 2300-летнего цикла.
Исследование солнца
Человечество начало интересоваться Солнцем с незапамятных времен. Оно почиталось как божество. Однако уже в античные времена появились первые научные взгляды на звезду. Уже тогда высказывались мнения, что Солнце – центр, вокруг которого вращаются планеты. Такая теория была возрождена Коперником только в 16 веке.
Впервые солнечные пятна стали наблюдать в Китае во времена династии Хань. В 12 веке появились первые рисунки солнечных пятен.
Инструментальное исследование Солнца началось в 1610 г благодаря изобретению телескопа, гелиоскопа. Астроном Кассини вычислил приблизительное расстояние от Земли до Солнца.
В 19 веке был установлен состав Солнца благодаря спектроскопии. В ХХ веке было установлено, что источником энергии Солнца является термоядерная реакция. Впоследствии было установлено, что подобные реакции происходят во всех звездах. В 2020 году были сделаны самые точные снимки нашей дневной звезды.