Как усиливает биполярный транзистор

Биполярный транзистор. Что он собой представляет, как устроен и как
работает?

Структура, носители, принципы и режимы работы: нормальный режим (в активной области), режимы отсечки и насыщения. Как и за счёт чего усиливает биполярный транзистор?

Ну вот, а теперь можно переходить к описанию структурной схемы транзистора.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор
Рис.1

Рассмотрим цепь, иллюстрирующую работу n-p-n транзистора типа в различных режимах.
Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзисторКак усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор
Рис.2 а) Режим отсечки тр-ра Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзисторб) Активный режим тр-ра Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзисторв) Режим насыщения тр-ра

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

На следующей странице рассмотрим эквивалентную схему транзистора, а также свойства и характеристики различных типов усилительных каскадов.

Источник

Работа биполярного транзистора. Режим усиления.

27 Май 2014г | Раздел: Радио для дома

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем осваивать биполярный транзистор и сегодня мы рассмотрим его работу в режиме усиления на примере простого усилителя звуковой частоты, собранного на одном транзисторе.

В режиме усиления транзисторы работают в схемах радиовещательных приемников и усилителях звуковой частоты (УЗЧ). При работе используются малые токи в базовой цепи транзистора, управляющие большими токами в коллекторной цепи. Этим и отличается режим усиления от режима переключения, который лишь открывает или закрывает транзистор под действием напряжения на базе.

1. Схема усилителя.

В качестве эксперимента соберем простой усилитель на одном транзисторе и разберем его работу.

В коллекторную цепь транзистора VT1 включим высокоомный электромагнитный телефон BF2, между базой и минусом источника питания GB установим резистор , и развязывающий конденсатор Cсв, включенный в базовую цепь транзистора.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Конечно, сильного усиления от такого усилителя мы не услышим, да и чтобы услышать звук в телефоне BF1 его придется очень близко преподнести к уху. Так как для громкого воспроизведения звука нужен усилитель как минимум с двумя-тремя транзисторами или так называемый двухкаскадный усилитель. Но чтобы понять сам принцип усиления, нам будет достаточно и усилителя, собранного на одном транзисторе или однокаскадном усилителе.

Усилительным каскадом принято называть транзистор с резисторами, конденсаторами и другими элементами схемы, обеспечивающими транзистору условия работы как усилителя.

2. Работа схемы усилителя.

При подаче напряжения питания в схему, на базу транзистора через резистор поступает небольшое отрицательное напряжение 0,1 — 0,2В, называемое напряжением смещения. Это напряжение приоткрывает транзистор, и через эмиттерный и коллекторный переходы начинает течь незначительный ток, который как бы переводит усилитель в дежурный режим, из которого он мгновенно выйдет, как только на входе появится входной сигнал.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Без начального напряжения смещения эмиттерный p-n переход будет закрыт и, подобно диоду, «срезать» положительные полупериоды входного напряжения, отчего усиленный сигнал будет искаженным.

Если на вход усилителя подключить еще один телефон BF1 и использовать его как микрофон, то телефон будет преобразовывать звуковые колебания в переменное напряжение звуковой частоты, которое через конденсатор Ссв будет поступать на базу транзистора.

Здесь, конденсатор Ссв выполняет функцию связующего элемента между телефоном BF1 и базой транзистора. Он прекрасно пропускает напряжение звуковой частоты, но преграждает путь постоянному току из базовой цепи к телефону BF1. А так как телефон имеет свое внутреннее сопротивление (около 1600 Ом), то без этого конденсатора база транзистора через внутреннее сопротивление телефона была бы соединена с эмиттером по постоянному току. И естественно, ни о каком усилении сигнала речи и быть не могло.

Теперь, если начать говорить в телефон BF1, то в цепи эмиттер-база возникнут колебания электрического тока телефона Iтлф, которые и будут управлять большим током в коллекторной цепи транзистора. И уже этот усиленный сигнал, преобразованный телефоном BF2 в звук, мы и будем слышать.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Сам процесс усиления сигнала можно описать следующим образом.
При отсутствии напряжения входного сигнала Uвх, в цепях базы и коллектора текут небольшие токи (прямые участки графиков а, б, в), определяемые напряжением источника питания, напряжением смещения на базе и усилительными свойствами транзистора.

Как только в цепи базы появляется входной сигнал (правая часть графика а), то соответственно ему начинают изменяться и токи в цепях транзистора (правая часть графиков б, в).

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Во время отрицательных полупериодов, когда отрицательное входное Uвх и напряжение источника питания GB суммируются на базе — токи цепей увеличиваются.

Во время же положительных полупериодов, кода напряжение входного сигнала Uвх и источника питания GB положительны, отрицательное напряжение на базе уменьшается и, соответственно, токи в обеих цепях также уменьшаются. Вот таким образом и происходит усиление по напряжению и току.

Если же нагрузкой транзистора будет не телефон а резистор, то создающееся на нем напряжение переменной составляющей усиленного сигнала можно будет подать во входную цепь второго транзистора для дополнительного усиления.

Один транзистор может усилить сигнал в 30 – 50 раз.

На рисунке ниже показана зависимость тока коллектора от тока базы.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Например. Между точками А и Б ток базы увеличился от 50 до 100 мкА (микроампер), то есть составил 50 мкА, или 0,05 mA. Ток коллектора между этими точками возрос от 3 до 5,5 mA, то есть вырос на 2,5 mA. Отсюда следует, что усиление по току составляет: 2,5 / 0,05 = 50 раз.

Точно также работают транзисторы структуры n-p-n. Но для них полярность включения источника питания, питающей цепи базы и коллектора меняется на противоположную. То есть на базу и коллектор подается положительное, а на эмиттер отрицательное напряжения.

Запомните: для работы транзистора в режиме усиления на его базу, относительно эмиттера, вместе с напряжением входного сигнала обязательно подается постоянное напряжение смещения, открывающее транзистор.

Для германиевых транзисторов отпирающее напряжение составляет не более 0,2 вольта, а для кремниевых не более 0,7 вольта.

Напряжение смещения на базу не подают лишь в том случае, когда эмиттерный переход транзистора используют для детектирования радиочастотного модулированного сигнала.

3. Классификация транзисторов по мощности и по частоте.

В зависимости от максимальной мощности рассеивания биполярные транзисторы делятся на:

1. малой мощности — Pmax ≤ 0,3 Вт;
2. средней мощности — 0,3 1,5 Вт.

В зависимости от значения граничной частоты коэффициента передачи тока на транзисторы:

1. низкой частоты – fгр ≤ 3 МГц;
2. средней частоты – 3 МГц 300 МГц.

Ну вот и все.
Теперь у Вас не должно возникнуть вопросов о работе биполярного транзистора в режиме усиления.
Удачи!

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Е. Айсберг — Транзистор. Это очень просто! 1964г.

Источник

Что такое транзистор и как он работает?

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор Рис. 5. Полевые транзисторы Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор Рис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Если, например, кремний легировать фосфором (донор), то получим полупроводник с избытком электронов (структура n-Si). При добавлении бора (акцептор) легированный кремний станет полупроводником с дырочной проводимостью (p-Si), то есть в его структуре будут преобладать положительно заряженные ионы.

Односторонняя проводимость.

Проведём мысленный эксперимент: соединим два разнотипных полупроводника с источником питания и подведём ток к нашей конструкции. Произойдёт нечто неожиданное. Если соединить отрицательный провод с кристаллом n-типа, то цепь замкнётся. Однако, когда мы поменяем полярность, то электричества в цепи не будет. Почему так происходит?

В результате соединения кристаллов с разными типами проводимости, между ними образуется область с p-n переходом. Часть электронов (носителей зарядов) из кристалла n-типа перетечёт в кристалл с дырочной проводимостью и рекомбинирует дырки в зоне контакта.

В результате возникают некомпенсированные заряды: в области n-типа – из отрицательных ионов, а в области p-типа из положительных. Разница потенциалов достигает величины от 0,3 до 0,6 В.

Связь между напряжением и концентрацией примесей можно выразить формулой:

VT величина термодинамического напряжения, Nn и Np концентрация соответственно электронов и дырок, а ni обозначает собственную концентрацию.

При подсоединении плюса к p-проводнику, а минуса к полупроводнику n-типа, электрические заряды преодолеют барьер, так как их движение будет направлено против электрического поля внутри p-n перехода. В данном случае переход открыт. Но если полюса поменять местами, то переход будет закрыт. Отсюда вывод: p-n переход образует одностороннюю проводимость. Это свойство используется в конструкции диодов.

От диода к транзистору.

Усложним эксперимент. Добавим ещё одну прослойку между двумя полупроводниками с одноименными структурами. Например, между кремниевыми пластинами p-типа вставим прослойку проводимости (n-Si). Не трудно догадаться, что произойдёт в зонах соприкосновения. По аналогии с вышеописанным процессом образуются области с p-n переходами, которые заблокируют движение электрических зарядов между эмиттером и коллектором, причём независимо от полярности тока.

Самое интересное произойдёт тогда, когда мы приложим незначительное напряжение к прослойке (базе). В нашем случае, подадим ток с отрицательным знаком. Как и в случае с диодом, образуется цепь эмиттер-база, по которой потечёт ток. Одновременно прослойка начнёт насыщаться дырками, что приведёт к дырочной проводимости между эмиттером и коллектором.

Посмотрите на рисунок 7. На нём видно, что положительные ионы заполнили всё пространство нашей условной конструкции и теперь ничто не мешает проводимости тока. Мы получили наглядную модель биполярного транзистора структуры p-n-p.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор Рис. 7. Принцип работы триода

При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается.

Устройство может работать и в усилительном режиме.

Ток коллектора связан прямой пропорциональностью с током базы: Iк = ß*IБ, где ß коэффициент усиления по току, IБ ток базы.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Этот принцип используют для усиления сигналов.

Подавая на базу слабые импульсы, на выходе мы получаем такую же частоту усиления, но со значительно большей амплитудой (задаётся величиной напряжения, приложенного к цепочке коллектор эмиттер).

Аналогичным образом работают npn транзисторы. Меняется только полярность напряжений. Устройства со структурой n-p-n обладают прямой проводимостью. Обратную проводимость имеют транзисторы p-n-p типа.

Остаётся добавить, что полупроводниковый кристалл подобным образом реагирует на ультрафиолетовый спектр света. Включая и отключая поток фотонов, или регулируя его интенсивность, можно управлять работой триода или менять сопротивление полупроводникового резистора.

Схемы включения биполярного транзистора

Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором (Рис. 8).

Для усилителей с общей базой характерно:

Схемы с общим эмиттером обладают:

При таком подключении достаточно одного источника питания.

Схема подключения по принципу «общий коллектор» обеспечивает:

По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.

Схемы включения полевого транзистора

На практике применяют схемы подключений по аналогии с биполярным триодом:

На рисунке 10 показаны различные схемы включения.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор Рис. 10. Изображение схем подключения полевых триодов

Практически каждая схема способна работать при очень низких входных напряжениях.

Источник

Биполярный транзистор

Автор: Владимир Васильев · Опубликовано 9 сентября 2015 · Обновлено 29 августа 2018

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.

Биполярный транзистор

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзисторЭто изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

-коэффициент усиления по току.

Его также обозначают как Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Исходы из выше сказанного транзистор может работать в четырех режимах:

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзисторТок который нам нужен известен. Напряжение на базовом резисторе будет Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзисторТакое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате мы вполне можем найти сопротивление резистора

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзисторОсталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзисторТок в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.

Как усиливает биполярный транзистор. Смотреть фото Как усиливает биполярный транзистор. Смотреть картинку Как усиливает биполярный транзистор. Картинка про Как усиливает биполярный транзистор. Фото Как усиливает биполярный транзистор

Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов и солнечного настроения!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *