Как упростить выражение с корнями

Иррациональные выражения (выражения с корнями) и их преобразование

Статья раскрывает смысл иррациональных выражений и преобразования с ними. Рассмотрим само понятие иррациональных выражений, преобразование и характерные выражения.

Что такое иррациональные выражения?

При знакомстве с корнем в школе мы изучаем понятие иррациональных выражений. Такие выражения тесно связаны с корнями.

Иррациональные выражения – это выражения, которые имеют корень. То есть это выражения, имеющие радикалы.

Основные виды преобразований иррациональных выражений

При вычислении таких выражений необходимо обратить внимание на ОДЗ. Часто они требуют дополнительных преобразований в виде раскрытия скобок, приведения подобных членов, группировок и так далее. Основа таких преобразований – действия с числами. Преобразования иррациональных выражений придерживаются строгого порядка.

Необходимо выполнить замену числа 9 на выражение, содержащее корень. Тогда получаем, что

Полученное выражение имеет подобные слагаемые, поэтому выполним приведение и группировку. Получим

Результат тождественных преобразований привел к произведению двух рациональных выражений, которые необходимо было найти.

Можно выполнять ряд других преобразований, которые относятся к иррациональным выражениям.

Преобразование подкоренного выражения

Использование свойств корней

Для правильного преобразования используют преобразования иррациональных выражений с использованием свойств корней.

Внесение множителя под знак корня

Вынесение множителя из-под знака корня

Вынесение множителя из-под корня необходимо для упрощения выражения и его быстрого преобразования.

Преобразование дробей, содержащих корни

Необходимо обратить внимание на то, что необходимо изменять знак только числителя или только знаменателя. Получим, что

Сокращение дроби чаще всего используется при упрощении. Получаем, что

Перед сокращением необходимо выполнять преобразования, которые упрощают выражение и дают возможность разложить на множители сложное выражение. Чаще всего применяют формулы сокращенного умножения.

Сокращение дробей или приведение подобных необходимо только на ОДЗ указанной дроби. При умножении числителя и знаменателя на иррациональное выражение получаем, что мы избавляемся от иррациональности в знаменателе.

Избавление от иррациональности в знаменателе

Переход от корней к степеням

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *