Как упростить кубическое уравнение
Решение кубических уравнений
Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.
Решение двучленного кубического уравнения вида A x 3 + B = 0
Решение
Необходимо найти х из уравнения. Запишем:
Необходимо применить формулу сокращенного умножения. Тогда получим, что
Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0
Решение
Уравнение является возвратным. Необходимо произвести группировку. Получим, что
Ответ:
Решение кубических уравнений с рациональными корнями
Решение
3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0
A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2
Решение
Решение кубических уравнений по формуле Кардано
Полученные p и q в формулу Кардано. Получим, что
Решение
Отсюда следует, что
Производим подстановку в формулу Кордано и получим
— 343 216 3 имеет три значения. Рассмотрим их ниже.
Преобразуем при помощи формулы Кордано:
При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.
Кубические уравнения в школе
ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ
ЧОУ «Санкт-Петербургская Школа «Тет-а-Тет»
Учитель Математики Высшей категории
Как решать кубические уравнения
3 метода: Решение при помощи формулы для решения квадратного уравнения. Нахождение целых решений при помощи разложения на множители. Использование дискриминанта.
Кубические уравнения имеют вид ax 3 + bx 2 + cx + d = 0. Способ решения таких уравнений известен уже несколько столетий (он был открыт в 16 веке итальянскими математиками). Решить некоторые кубические уравнения довольно сложно, но при правильном подходе (и хорошем уровне теоретических знаний) вы сможете решать даже самые сложные кубические уравнения.
Метод 1 из 3: Решение при помощи формулы для решения квадратного уравнения
1. Проверьте, имеет ли данное вам кубическое уравнение свободный член. Как отмечалось выше, кубические уравнения имеют вид ax 3 + bx 2 + cx + d = 0, где коэффициенты «b», «с» и «d» могут быть равны 0, то есть кубическое уравнение может состоять только из одного члена (с переменной в третьей степени). Сначала проверьте, имеет ли данное вам кубическое уравнение свободный член, то есть «d». Если свободного члена нет, вы можете решить данное кубическое уравнение при помощи формулы для решения квадратного уравнения.
Если свободный член есть, используйте другой метод решения (смотрите следующие разделы).
2. Так как в данном уравнении свободного члена нет, то все члены этого уравнения содержат переменную «х», которую можно вынести за скобки: x ( ax 2 + bx + c ).
3. Обратите внимание, что уравнение в скобках – это квадратное уравнение вида ax 2 + bx + c, которое можно решить при помощи формулы ( <-b +/-√ ( b 2 — 4 ac )>/2 a ). Решите квадратное уравнение, и вы решите кубическое уравнение.
4. Помните, что квадратные уравнения имеют два решения, а кубические – три решения. Вы нашли два решения квадратного, а следовательно и кубического уравнения. В случаях, когда вы выносите «х» за скобки, третье решение всегда равно 0.
Это верно, так как любое число или выражение, умноженное на 0, равно 0. Так как вы вынесли «х» за скобки, то вы разложили кубическое уравнение на два множителя («х» и квадратное уравнение), один из которых должен быть равен 0, чтобы все уравнение равнялось 0.
Метод 2 из 3: Нахождение целых решений при помощи разложения на множители
1. Проверьте, имеет ли данное вам кубическое уравнение свободный член. Описанный в предыдущем разделе метод не годится для решения кубических уравнений, в которых присутствует свободный член. В этом случае вам придется воспользоваться методом, который описан в этом или следующем разделах.
2. Найдите множители коэффициента «а» (коэффициент при x 3 ) и свободного члена «d». Множители числа – это числа, которые при перемножении дают исходное число. Например, множителями числа 6 являются числа 1, 2, 3, 6 (1*6 = 6 и 2*3 = 6).
3. Разделите множители коэффициента «а» на множители свободного члена «d». Вы получите дроби и целые числа. Целым решением данного вам кубического уравнения будет либо одно из этих целых чисел, либо отрицательное значение одного из этих целых чисел.
Деление по схеме Горнера – непростая тема; для получения дополнительной информации по ней перейдите по ссылке, указанной выше. Вот пример того, как найти одно из решений данного вам кубического уравнения при помощи деления по схеме Горнера:
Метод 3 из 3: Использование дискриминанта
1. В этом методе вы будете работать со значениями коэффициентов «а», «b», «с», «d». Поэтому лучше выписать значения этих коэффициентов заранее.
2. Вычислите Δ0 = b 2 — 3 ac . В этом методе потребуется провести несколько сложных вычислений, но если вы уясните его, вы сможете решать самые сложные кубические уравнения.
В нашем примере Δ0 = 0 и Δ1 = 0, поэтому найти Δ не составит труда.
0 = Δ, поэтому данное вам уравнение имеет одно или два решения.
5. Вычислите C = 3 √(√((Δ1 2 — 4Δ0 3 ) + Δ1)/ 2). Эта величина позволит вам найти корни кубического уравнения.
6. Корни (решения) кубического уравнения вычисляются по формуле ( b + u n C + (Δ0/ u n C )) / 3 a , где u = (-1 + √(-3))/2, а n равно либо 1, либо 2, либо 3.
Решения кубических уравнений с вещественными коэффициентами. Универсальные методы. Дискриминант кубического уравнения. Формула Виета для кубического уравнения.
Решения кубических уравнений с вещественными коэффициентами. Универсальные методы. Дискриминант кубического уравнения. Формула Виета для кубического уравнения.
Кубическим уравнением называется уравнение вида
Мы рассмотрим случай, когда коэффициенты являются веществеными числами.
Корни кубического уравнения. Нахождение корней (решение) кубического уравнения.
Число х называется корнем кубического уравнения (1), если при его подстановке уравнение (1) обращается в верное равенство.
Итак, возможны только 3 следующих случая:
К такому виду можно привести любое кубическое уравнение вида (1) с помощью следующей замены:
Итак, приступим к вычислению корней. Найдем следующие величины:
Дискриминант уравнения (2) в этом случае равен
Соответственно, если Q>0, то уравнения (2) и (1) будут иметь лишь 1 (вещественный) корень, y1. Подставим его в (3) и найдем х для уравнения (1). (если вас интересуют также мнимые корни, то просто вычислите еще и y2, y3 и подставьте их в (3).
Если Q 3 + ax 2 + bx +c = 0 (4)
Очевидно, любое уравнение вида (1) можно привести к виду (4), просто поделив его на коэффициент а.
Итак, алгоритм применения этой формулы:
3. a) Если S>0, то вычисляем
И наше уравнение имеет 3 корня (вещественных):
Для тех, кого интересуют также и мнимые корни:
в) Если S=0,то уравнение имеет меньше трех различных решений:
Консультации и техническая
поддержка сайта: Zavarka Team