Как уменьшить пусковой ток

Методы снижения пусковых токов импульсных источников питания

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Александр Русу (г. Одесса)

Одна из главных проблем использования импульсных источников питания в светодиодных осветительных системах – ограничение пусковых токов, способных вывести эти системы из строя. Модульные решения, предусматриваюшие ограничение этих токов, предлагает компания MEAN WELL, а дискретные – для малосерийной продукции или индивидуальной разработки – сам автор статьи.

Маломощные импульсные источники питания (ИП) всегда пользовались стабильным спросом на рынке электроники – в системах промышленной автоматики, контроля доступа, пожарной безопасности и многих других. В последнее время этот список пополнился устройствами интернета вещей, умного дома и домашней автоматизации.

До недавнего времени использование ИП, независимо от того, являлись ли они универсальными блоками общего применения или разрабатывались для конкретного устройства, не вызывало особых технических проблем, но с началом эпохи светодиодного освещения ситуация изменилась не в лучшую сторону. Активное использование недорогих 12-вольтовых светодиодных лент увеличило число ИП в системах освещения, в результате чего стали появляться сбои в системах электроснабжения, вплоть до выхода оборудования из строя.

Суть проблемы заключается в значительной величине пускового тока (Inrush Current), возникающего в момент подключения блока питания к сети. Несмотря на то, что в каждом ИП приняты меры для его ограничения, все равно в большинстве устройств его величина может в десятки раз превышать ток, потребляемый при максимальной нагрузке. В результате одновременное включение нескольких ИП может приводить к срабатыванию защиты от короткого замыкания и вынуждает устанавливать автоматические выключатели либо с большим током, либо с большим временем срабатывания. Кроме того, при частом включении осветительных приборов резко уменьшается срок службы коммутирующих устройств – выключателей или реле, поскольку из-за чрезвычайно большого коммутируемого тока у них быстро прогорают контакты.

Хотя эта проблема не нова, до недавнего времени каких-либо готовых, а главное – доступных решений практически не было. Это и послужило поводом рассмотреть имеющиеся на рынке устройства для уменьшения пусковых токов, а также несколько доступных способов самостоятельного устранения этой проблемы.

Технические характеристики источников питания

На сегодняшний день создать ИП мощностью до 1 кВт не является сложной технической задачей. Доступность элементной базы и большое количество наработок в этой области позволяют в сжатые сроки наладить производство источников питания на основе известных компонентов и по известным рекомендациям. Неудивительно, что схемотехника, технические характеристики и внешний вид недорогих выпрямительных устройств как ведущих мировых производителей, так и малоизвестных компаний очень схожи.

Одними из недорогих источников питания, часто используемыми для питания светодиодных лент, являются модули серии LRS производства компании MEAN WELL (рисунок 1). При разработке данной линейки были использованы как последние достижения в области производства импульсных источников питания, так и самая современная элементная база, что позволило вывести ИП семейства LRS на современный технический уровень и обеспечить хорошее соотношение «цена/качество».

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Рис. 1. Выпрямитель из семейства LRS

Ключевыми особенностями семейства LRS (таблица 1) являются возможность работы в универсальном диапазоне входных напряжений (85…264 B AC), компактный размер (высота профиля 1U – 30 мм), высокий КПД (до 91,2%) и малое потребление при отключении нагрузки (0,2…0,75 Вт). ИП семейства LRS имеют множество сертификатов, среди которых IEC/EN 60335-1 (PD3) и IEC/EN61558-1, 2-16. Все источники питания LRS проходят тестирование при 100% нагрузки и имеют трехлетнюю гарантию.

Таблица 1. Основные технические характеристики выпрямителей семейства LRS

НаименованиеНоминальная выходная мощность, ВтВыходное напряжение, ВВходное напряжение В ACПотребляемый ток при 230 В АС, АСтартовый ток при 230 В АС, А
LRS-35355…4885…2640,4245
LRS-50503,3…4885…2640,5645
LRS-75755…4885…2640,8565
LRS-1001003,3…4885…2641,250
LRS-15015012…4885…132/170…2641,760
LRS-150F1505…4885…2641,760
LRS-2002003,3…4890…132/180…2642,260
LRS-3503503,3…4890…132/180…2643,460

Одной из специфических особенностей светодиодного освещения является возможность установки оборудования в специализированных электрических шкафах, поэтому наряду с ИП в перфорированных корпусах на практике может возникнуть реальная потребность в модулях с форм-фактором, рассчитанном на установку на DIN-рейку. В этом случае следует обратить внимание на семейство HDR производства компании MEAN WELL, выпускаемое в малогабаритных пластмассовых корпусах (рисунок 2).

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Рис. 2. Внешний вид выпрямителей семейства HDR производства MEAN WELL

Несмотря на то, что выпрямители HDR изначально были спроектированы для использования в автоматизированных системах управления и имеют изоляцию с электрической прочностью вплоть до Class II, сфера их применения не ограничивается питанием только промышленных контроллеров. Благодаря широкому диапазону входных напряжений, хорошему уровню электробезопасности, высокому КПД и малому энергопотреблению при отключении нагрузки (не более 0,3 Вт) эти модули (таблица 2) можно с успехом применить в самых разнообразных приложениях, начиная от питания элементов сложных технологических линий и заканчивая тем же светодиодным освещением.

Таблица 2. Основные технические характеристики выпрямителей семейства HDR

НаименованиеМаксимальная выходная мощность, ВтВыходное напряжение, ВВходное напряжение, В ACПотребляемый ток при 230 В АС, АСтартовый ток при 230 В АС, А
HDR-15155…4885…2640,2545
HDR-30365…4885…2640,4825
HDR-60605…4885…2640,860
HDR-10010012…4885…2641,670
HDR-15015012…4885…2641,670

Анализируя данные таблиц 1 и 2, можно увидеть, что у всех рассмотренных ИП пусковой ток в десятки раз превышает ток, потребляемый при максимальной нагрузке. Причем чем меньше мощность источника питания, тем больше это соотношение. Например, для самой маломощной из рассмотренных моделей – ИП HDR-15 пусковой ток (45 А), согласно технической документации, в 180 раз превышает максимальное значение во время работы (0,25 А). Для мощных выпрямителей это соотношение хоть и немного меньше, но все равно является достаточно большим. Абсолютный рекорд по величине пускового тока (70 А) принадлежит моделям HDR-150. При таком пусковом токе в момент включения устройства хоть и кратковременно, но будет потребляться около 15 кВт, что достаточно много даже для промышленного оборудования.

Ситуацию не спасает и введение в ИП корректора коэффициента мощности (ККМ). Если проанализировать технические характеристики модулей семейства RSP производства MEAN WELL (рисунок 3), отличающихся от рассмотренных выше выпрямителей LRS наличием активного корректора коэффициента мощности, то окажется, что их пусковые токи также превышают номинальные значения в 15…70 раз (таблица 3). Это, конечно, меньше, чем в модулях без ККМ, однако все равно много, даже несмотря на высокий коэффициент мощности (не менее 0,93).

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Рис. 3. Выпрямитель семейства RSP производства MEAN WELL

Таблица 3. Основные технические характеристики выпрямителей семейства RSP

НаименованиеМаксимальная выходная мощность, ВтВыходное напряжение, ВВходное напряжение, В АСПотребляемый ток при 230 В АС, АСтартовый ток при 230 В АС, А
RSP-75753,3…4885…2640,535
RSP-1001003,3…4885…2640,5530
RSP-1501503,3…4885…2640,845
RSP-2002002,5…4888…2641,140
RSP-3203202,5…1288…2641,540
RSP-5005003,3…4885…2642,6540

Причины появления пусковых токов

На сегодняшний день большинство ИП изготавливается по схеме с бестрансформаторным входом. Ключевыми элементами данной схемы являются выпрямитель, реализуемый чаще всего по мостовой схеме, и входной сглаживающий конденсатор (рисунок 4).

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Рис. 4. Типовая схема входной цепи выпрямительного устройства с бестрансформаторным входом

До включения блока питания конденсатор C1 полностью разряжен и напряжение на нем равно нулю, в то время как в рабочем режиме оно достигает амплитудного значения напряжения сети, равного, при входном напряжении 220 В, около 310 В. Поскольку напряжение на конденсаторе измениться мгновенно не может, то в момент включения схемы обязательно должен произойти бросок тока из-за необходимости заряда конденсатора фильтра.

Максимальное значение пускового тока зависит не только от электрических характеристик элементов схемы, но и от момента включения ее в сеть. Наихудшим случаем считается подключение к сети в моменты, когда ее напряжение равно амплитудным значениям. В этом случае к диодам выпрямителя VD1…VD4 прикладывается прямое напряжение около 310 В, и их ток ограничивается лишь активными сопротивлениями кристаллов, соединительных проводников и внутренним последовательным сопротивлением конденсатора. Очевидно, что если не принимать никаких мер, то начальное значение пускового тока может превысить 100 А даже при небольшой емкости конденсатора C1.

Несмотря на то, что выпрямительные полупроводниковые диоды VD1…VD4 обычно выдерживают подобные перегрузки, столь высокое значение тока может значительно сократить срок их службы и вывести из строя. Для предотвращения этого пусковой ток даже в маломощных схемах обычно ограничивается с помощью резистора, сопротивление которого выбирается таким, чтобы ток через диоды выпрямителя в самом худшем случае не превышал максимально допустимое значение для данного режима работы.

Однако последовательное включение сопротивления приводит к увеличению потерь, величина которых может оказаться недопустимо большой. Для исключения этого в выпрямителях вместо резистора чаще всего устанавливают термистор с отрицательным температурным коэффициентом сопротивления. В момент включения, когда сопротивление термистора велико, пусковой ток мал. После запуска источника питания ток, протекающий через термистор, разогревает его, что приводит к снижению его сопротивления и, как следствие, к уменьшению влияния на работу схемы. Несмотря на простоту, у такого способа есть один серьезный недостаток – при частой коммутации, например, когда ИП включается сразу после выключения, термистор не успевает остыть и ограничение пускового тока происходит не так эффективно.

Таким образом, в импульсных ИП, построенных по классическим схемам, пусковой ток ограничивается лишь на уровне, обеспечивающем безопасный режим работы выпрямительных диодов, поскольку использование иного решения приведет или к уменьшению КПД системы в целом, или к ее существенному удорожанию. Очевидно, что проблему пусковых токов в большинстве случаев необходимо решать другими способами.

Методы ограничения пусковых токов

При анализе схемотехники импульсных выпрямительных устройств с бестрансформаторным входом становится понятно, что одним из наилучших методов уменьшения пусковых токов является кратковременное увеличение сопротивления входной цепи в момент включения. Именно по такому пути пошла компания MEAN WELL, представив на рынке серию ограничителей пусковых токов семейства ICL (рисунок 5).

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Рис. 5. Ограничители пусковых токов производства компании MEAN WELL

На сегодняшний день MEAN WELL предлагает своим клиентам четыре модели ограничителей с максимальным пусковым током 23 А (ICL-16R/L) и 48 А (ICL-28R/L), предназначенные для установки на DIN-рейку (модели с суффиксом R) или на шасси (модели с суффиксом L). Основными элементами модулей являются мощные токоограничивающие резисторы, реле и схема управления (рисунок 6). В момент включения контакты реле разомкнуты, и входной ток выпрямительных устройств протекает через резистор с сопротивлением R. Через некоторое время, определяемое схемой управления, на обмотку реле подается напряжение, и его контакты замыкают токоограничивающий резистор, подключая выпрямительные устройства непосредственно к сети.

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Рис. 6. Структурная схема ограничителей ICL

Время срабатывания реле определяется схемой управления и составляет 300 мс для моделей ICL-16R/L и 150 мс для ICL-28R/L (таблица 4), что равно, соответственно, 15 и 7,5 периодам изменения напряжения сети с частотой 50 Гц. Этого времени вполне достаточного для заряда конденсаторов входных фильтров, поскольку в большинстве случаев напряжение на них достигает необходимой величины в течение 1…3 периодов (20…60 мс).

Таблица 4. Основные технические характеристики ограничителей ICL

Источник

Эффективные способы уменьшить пусковые токи электродвигателя

Новости

Полезные советы

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

ⓅПусковой ток относится к наиболее частым причинам повреждений электродвигателей. При подключении электропитания обмотки двигателя работают в режиме короткого замыкания – до начала вращения ротора потребляемый ток может превышать номинальный в 5 – 8 и более раз, в зависимости от модели электродвигателя. При включении напрямую, без устройств ограничения тока, возникает необходимость использования большего сечения проводников питания, более мощных коммутационных и защитных устройств по сравнению с необходимыми для работы мотора в номинальном режиме.

Частые включения неизбежно приводят к преждевременному износу питающей сети и изоляции обмоток двигателя, тем самым снижая срок эксплуатации оборудования, прямое включение мощных электродвигателей, чаще всего, вообще невозможно. Традиционные способы уменьшения пускового тока – включение через автотрансформатор, переключение обмоток трёхфазных двигателей звезда – треугольник, использование реактивного сопротивления катушек индуктивности, не всегда приводят к желаемому результату. Большую эффективность дают специально разработанные устройства плавного пуска, другое распространённое название – софтстарт.

Решение может быть реализовано с помощью основных принципов управления – изменением величины питающего напряжения или его частоты, иногда применяется комбинация обоих методов. Для изменения выходных характеристик устройств применяются мощные полупроводниковые компоненты, соответствующие всем требованиям регулирования: IGBT транзисторы, MOSFET – полевые транзисторы, симметричные тиристоры. В простейшем устройстве плавного пуска электродвигателя, используется изменение питающего напряжения в течение заданного настройками времени, до выхода двигателя на номинальную мощность. В большинстве случаев, применяется фазовое регулирование с понижением пускового момента. В более совершенных устройствах применяется частотный преобразователь, в момент запуска схема работает в режиме изменения напряжения и частоты – с линейной или квадратичной зависимостью. Некоторые модели используют векторный метод управления с регулировкой магнитного потока – что позволяет создавать постоянный пусковой момент на нагрузке. Такие регуляторы оснащены встроенным микропроцессором, получающим данные без дополнительных датчиков.

В случаях, когда для управления электродвигателем применяется отдельный частотный преобразователь Bosch VFC3610, мягкий пуск производиться с его помощью – такая возможность по умолчанию присутствует в любом преобразователе частоты и допускает установку требуемых параметров запуска. Использование частотных регуляторов EFC3610 только для обеспечения плавного старта не рационально – специализированные устройства имеют меньшую стоимость. Все электронные изделия для управления электродвигателями являются мощными источниками разнообразных помех, обязательно проникающих в сеть и должны эксплуатироваться совместно с фильтрами ЭМИ.

*Комментарий: редакция не несёт ответственности за содержание и мнения, изложенные в статьях со знаком Ⓟ.

Источник

Что такое пусковой ток двигателя?

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Что такое пусковой ток, как его посчитать, увидеть и измерить?

Решил разобраться в теме, про которую написано предостаточно, но суть неясна. Вопрос касается пуска электродвигателей, при котором возникает так называемый пусковой ток.

Итак, сразу к делу. Корень проблемы кроется в том, что для запуска электродвигателя (при подаче питания) требуется гораздо большее усилие, чем для продолжения. Эта физика работает со всеми предметами в мире – ведь начать движение всегда труднее, чем продолжить его.

В статье речь пойдёт об асинхронном электродвигателе с короткозамкнутым ротором, который применяется в промышленном оборудовании в 95% случаев. Питание – трехфазное. Как обычно, по тексту буду отсылать к своим статьям, а в конце можно будет скачать много чего интересного по теме.

Пусковой ток и его кратность

Чтобы тронуть с места (пустить) двигатель, нужен громадный пусковой ток (Iп). Громадный – по сравнению с номинальным (рабочим) током Iн на установившейся скорости. В статьях обычно указывают, что пусковой ток превышает рабочий в 5-8 раз. Это число называется “Кратность пускового тока” и обозначается как коэффициент Кп = Iп / Iн.

Пусковой ток – это ток, который потребляет электродвигатель во время пуска. Узнать пусковой ток можно, зная номинальный ток и коэффициент Кп:

Номинальный ток всегда указан на шильдике двигателя:

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Номинальный ток двигателя для разных напряжений и схем включения

Кп – рабочий параметр, который указан в характеристиках двигателя, но на корпусе двигателя он никогда не указывается.

Замечу, что не надо путать номинальный и рабочий токи. Номинальный ток – это ток, на котором двигатель может работать продолжительное время, он ограничен только нагревом обмотки статора. Рабочий ток – это реальный ток в данном агрегате, он всегда меньше либо равен номинальному. На практике рабочий ток измеряется токоизмерительными клещами, амперметром или трансформатором тока.

Если рабочий ток больше номинального – жди беды. Читайте мою статью про то, как защитить электродвигатель от перегрузки и перегрева.

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Параметры двигателей. Кратность пускового тока

Пример из первой строчки на картинке: конкретный двигатель мощностью 1,5 кВт имеет номинальный ток 3,4 А. Значит, пусковой ток в какой-то момент (сколько длится этот “момент” – рассмотрим ниже) может достигать значения 3,4 х 6,5 = 22,1 А!

Кратность пускового тока зависит прежде всего от мощности двигателя и от количества пар полюсов. Чем меньше мощность, тем меньше пусковой ток. А чем меньше пар полюсов (больше номинальные обороты) – тем больше пусковой ток.

То есть, самым большим током при пуске (7 – 8,5 от номинала) обладают высокооборотистые двигатели (3000 об/мин, 1 пара полюсов) сравнительно большой мощности (более 10 кВт).

Так происходит потому, что потребляемый ток и момент инерции при пуске зависит от конструкции двигателя и способа намотки. Мало полюсов – низкое сопротивление обмоток. Низкое сопротивление – большой ток. Кроме того, высокооборотистым движкам для полной раскрутки требуется больше времени, а это опять же тяжелый пуск.

Если объяснить более научным языком, то дело происходит так. Когда двигатель стоит, его степень скольжения S = 1. При раскручивании (или, как любят говорить спецы, разворачивании) S стремится к нулю, но никогда его не достигает – на то двигатель и называют асинхронным, ведь вращение ротора никогда не догонит вращение поля статора из-за потерь. Одновременно сердечник ротора насыщается магнитным полем, увеличивается ЭДС самоиндукции и индукционное сопротивление. А значит, уменьшается ток.

Кому хочется узнать подробнее – в конце статьи я выложил несколько хороших книг по теме.

На самом деле не так всё просто, начинаем копать глубже.

Как узнать пусковой ток?

Кратность пускового тока (отношение пускового тока к номинальному) найти в документации на двигатель бывает не так-то просто. Но его можно измерить (оценить, узнать) самому. Вот навскидку несколько способов:

Конечно, реальность отличается от эксперимента. Прежде всего тем, что ток короткого замыкания реальной сети питания не бесконечен. То есть, провода, питающие двигатель, имеют сопротивление, на котором в момент пуска падает напряжение (иногда – до 50%). Из-за этого ограничения реальный пусковой ток будет меньше, а разгон – длительнее. Поэтому нужно понимать, что значение кратности пускового тока, указанное производителем, в реальности всегда будет меньше.

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Для чего нужны двигатели – приводить в действие механизмы и получать прибыль!

Теперь разберём другой вопрос –

Какой вред от пускового тока?

Пусковой ток – это проблема. Это –

От пускового тока перегружается всё, и момент пуска становится в тягость вcем участникам процесса. Именно в этот критический момент может проявиться “слабое звено”. Кроме того, многие участники электропитания, работающие в этой сети, испытывают проблемы – например, лампочки снижают яркость из-за снижения напряжения, а контроллеры могут зависнуть из-за мощной помехи.

И в то же время пусковой ток – это проблема, от которой никуда не деться, если сразу подавать на двигатель номинальное питание и не использовать специальные методы.

Как уменьшить пусковой ток асинхронного двигателя

Решить проблему большого пускового тока электрически можно двумя путями:

Можно сконструировать какую-то муфту, коробку передач, вариатор – для того чтобы раскрутить двигатель вхолостую, а потом подключить потребителя механического момента.

В современном оборудовании двигатели мощнее 2,2 кВт практически никогда напрямую не включают, поэтому для них пусковые токи рояли не играют. Для уменьшения пускового тока (и не только) в основном применяют преобразователи частоты, о которых будут отдельные статьи.

Как снизить вред от пускового тока?

Если изменить схему питания двигателя невозможно (например, сосед по даче каждые пол часа запускает токарный станок, а никакие “методы воздействия” не воздействуют), то можно применить различные методы минимизации вреда от пусковых токов. Например:

Но напоминаю, что мы тут занимаемся не устранением последствий, а предотвращением проблем, поэтому погнали дальше.

Время действия и величина пускового тока

Длительностью пускового тока будем считать время, в течение которого ток понижается от максимума (Iп) до номинала (Iн). Эта длительность фактически равна времени разгона от нуля до номинальной скорости вращения.

Весь вопрос в том, какова длительность этого тока – 10 миллисекунд (пол периода), когда двигатель на холостом ходу, или 10 секунд, когда на валу массивная крыльчатка. Теоретически рассчитать это время невозможно. Однако, поделюсь некоторыми соображениями.

Как я говорил выше, ток двигателя при пуске может превышать норму в несколько раз (Кп). И некоторые начинающие электрики, которые не читают мой блог, считают, что защитный автомат нужно выбирать так же – на повышенный ток. В статьях и даже инструкциях пишут, что “При выборе автомата необходимо учитывать, что пусковой ток асинхронного электродвигателя в 5 – 7 раз превышает номинальный”. Как это учитывать? Неужели ток автомата выбирать в 5-7 раз выше номинального тока двигателя?

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Шильдик китайского электродвигателя 30 кВт

Написано – 56 А. Что это значит? Неужели то, что ток защитного автомата должен быть более 300 А? Конечно, нет. И выбор автомата в данном случае зависит не только от номинального тока двигателя (56 А), но и от времени действия пускового тока.

Кстати, давайте проведём расследование и узнаем пусковой ток этого двигателя. Ведь на сайт этого китайского производителя нам попасть не суждено. Исходные номинальные данные: мощность – 30 кВт, момент – 190,9 N·m, ток – 56 А. Смотрим по каталогам отечественных производителей, ищем подобный двигатель, ведь законы физики одинаковы и в России, и в Китае. Находим (каталог в конце статьи): это двигатель на 1500 оборотов, 4 полюса, с кратностью пускового тока Кп = 7. В итоге получаем: Iп = Iн · Кп = 56 · 7 = 392 А. Это теоретический пусковой ток, но это не ток уставки автомата!

Пусковой ток является максимально возможным током. Максимальным ток будет при пуске, то есть тогда, когда двигатель стоит. То есть, пусковой ток есть ВСЕГДА, и всегда его начальное значение имеет запредельную величину. В случае с нашим китайским движком – 392 А, если принять ток КЗ питающей сети равным бесконечности (источник напряжения с нулевым внутренним сопротивлением).

Тепловое действие пускового тока

Если перейти к формулам, пусковой ток оказывает тепловое действие на электродвигатель, которое описывается так называемым интегралом Джоуля. Если по простому, то тепловая энергия, производимая электрическим током, пропорциональна квадрату тока, умноженному на время. Обозначается эта величина через I2t.

Хорошая новость в том, что защитный автомат имеет примерно такую же тепловую (время-токовую) характеристику, что и время-токовая характеристика разгона двигателя.

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Время-токовые характеристики защитного автомата

Что видим? Для защиты двигателя используются в основном автоматы с характеристикой D, как раз для того, чтобы меньше реагировать на кратковременные перегрузки. Подробнее здесь.

А для пускового тока двигателя график будет примерно такой:

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

График пускового тока (теоретический) при Кп = 6

Линейность графика – условная. Всё зависит от изменения момента нагрузки в процессе разгона. Теоретический график показан пунктиром. На этом графике Кп = Iп / Iн = 6, но это теоретическое (табличное) значение. Время разгона до номинала = tп.

Реальный график начерчен сплошной линией. На нём Iп` – это реальное значение пускового тока, которое всегда меньше теоретического. Это обусловлено тем, что питающая сеть имеет не нулевое сопротивление, и при повышении тока на проводах возникают потери напряжения.

Про потери на низком напряжении я писал тут, про потери в сетях 0,4 кВ – здесь.

Понятно, что из-за потерь время разгона будет больше, оно обозначено на графике через tп`.

Теперь повернём последний график, чтобы привести оси к одной системе координат:

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Время от тока, если можно так выразиться

Не правда ли, весьма похоже на время-токовую характеристику защитного мотор-автомата?

Получается, что обе характеристики компенсируют друг друга, и при выборе автомата достаточно настроить его уставку на номинальный ток двигателя. При особо тяжелых пусках, когда площадь под кривой пуска двигателя больше площади под кривой защитного автомата, стоит подумать о плавном пуске – УПП либо ПЧ.

Реальные измерения тока

Как я говорил выше, по моему мнению лучший способ “увидеть” пусковой ток – использовать активный (резистивный) шунт, и смотреть на нём напряжение осциллографом.

Я использовать вот такой шунт:

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Шунт для измерения пускового тока при помощи осциллографа

Подопытный – мотор-редуктор, который через цепную передачу крутит вертикальный шнек:

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Мотор-редуктор, на котором измеряем пусковой ток

Шнек на момент пуска был полным, поэтому его рабочий ток (7,7 А, измерено клещами) был почти равен номинальному (8,9 А, видно на шильдике).

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Шильдик двигателя вертикального шнека

Ситуация по пусковому току видна на осциллографе:

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Осциллограмма пускового тока 500 мс/дел

Приблизим интересующий момент, ускорив развертку до 100 мс/дел:

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Осциллограмма пускового тока 100 мс/дел

Тут уже легко увидеть синус питающего тока и оценить коэффициент кратности пускового тока Кп, который примерно равен 4.

Ещё приблизим момент истины (до 50 мс/дел):

Как уменьшить пусковой ток. Смотреть фото Как уменьшить пусковой ток. Смотреть картинку Как уменьшить пусковой ток. Картинка про Как уменьшить пусковой ток. Фото Как уменьшить пусковой ток

Момент пуска двигателя – ток пуска

Тут уже видны хорошо и переходные процессы, обусловленные индуктивностью и ЭДС самоиндукции обмоток двигателя. Этот импульс, длительность которого гораздо меньше периода сети 20 мс, даёт хорошую помеху с широким спектром в питающую сеть и радиоэфир.

Ещё один повод для использования ПЧ? Не совсем, там с помехами ситуация гораздо хуже!

Для тех, кто не хочет заморачиваться, повторю – есть клещи с функцией Inrush, которые могут измерять пусковой ток.

Скачать

Надеюсь, читатели простят мне вольное объяснение процессов – я постарался всё объяснить “на пальцах”. Кому нужны академические знания, пожалуйста:

• В.Л.Лихачев. Асинхронные электродвигатели. 2002 г. / Книга представляет собой справочник, в котором подробно описано устройство, принцип работы и характеристики асинхронных электродвигателей. Приводятся справочные данные на двигатели прошлых лет выпуска и современные. Описываются электронные пусковые устройства (инверторы), электроприводы., djvu, 3.73 MB, скачан: 6970 раз./

• Каталог двигателей ВЭМЗ / Параметры и каталог двигателей, pdf, 3.53 MB, скачан: 1130 раз./

• Дьяков В.И. Типовые расчеты по электрооборудованию / Практические расчеты по электрооборудованию, теоретические сведения, методики расчета, примеры и справочные данные., zip, 1.53 MB, скачан: 2441 раз./

• Карпов Ф.Ф. Как проверить возможность подключения нескольких двигателей к электрической сети / В брошюре приведен расчет электрической сети на колебание напряжения при пуске и самозапуске асинхронных двигателей с короткозамкнутым ротором и синхронных двигателей с асинхронным пуском. Рассмотрены условия, при которых допустим пуск и самозапуск двигателей. Изложение методов расчета иллюстрируется числовыми примерами. Брошюра предназначена для квалифицированных электромонтеров в качестве пособия при выборе типа электродвигателей, присоединяемых к коммунальной или промышленной электросети., zip, 1.9 MB, скачан: 1569 раз./

• Руководство по эксплуатации асинхронных двигателей / Настоящее руководство содержит наиболее важные указания по транспортировке, приемке, хранению, монтажу, пусконаладке, эксплуатации, техническому обслуживанию, поиску неисправностей и их устранению для электродвигателей производства «Электромашина». Руководство по эксплуатации предназначено для трехфазных асинхронных электродвигателей низкого и высокого напряжений серий А, АИР, МТН, МТКН, 4МТМ, 4МТКМ, ДА304, А4., pdf, 7.54 MB, скачан: 2454 раз./

Ещё пособие по двигателям:
• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 1916 раз./

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *