фундамент что это такое по гост
ГОСТ Р 57361-2016
Фундаменты зданий. Теплотехнический расчет
Купить ГОСТ Р 57361-2016 — бумажный документ с голограммой и синими печатями. подробнее
Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль»
Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.
Способы доставки
В стандарте представлены упрощенные методики теплофизического расчета фундаментов зданий для исключения возможности возникновения морозного пучения грунта.
Идентичен EN ISO 13793:2001
Оглавление
1 Область применения
2 Нормативные ссылки
3 Термины, обозначения и единицы измерения
4 Принципы проектирования
5 Свойства материала
6 Климатические данные
7 Фундаменты. Глубины заложения, превышающие глубины промерзания в ненарушенном грунте
8 Полы из плит на грунтовом основании для отапливаемых зданий
9 Подвесные полы для отапливаемых зданий
10 Неотапливаемые здания
Приложение А (обязательное) Определение и расчет индекса промерзания
Приложение В (обязательное) Численные расчеты
Приложение С (обязательное) Проектные данные для полов из плит на грунтовом основании на базе критерия 0 °С
Приложение D (справочное) Подверженность пучению грунта
Приложение Е (справочное) Примеры с решением
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов национальным стандартам
Дата введения | 01.07.2017 |
---|---|
Добавлен в базу | 05.05.2017 |
Актуализация | 01.02.2020 |
Этот ГОСТ находится в:
Организации:
13.12.2016 | Утвержден | Федеральное агентство по техническому регулированию и метрологии | 2031-ст |
---|---|---|---|
Разработан | ФГУП СТАНДАРТИНФОРМ | ||
Разработан | НИИОСП им. Н.М. Герсеванова | ||
Разработан | АО НИЦ Строительство | ||
Издан | Стандартинформ | 2017 г. |
Foundations of buildings. Calculation and design rules taking into account temperature influences
Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ
ГОСТР
57361—
EN ISO 13793:2001
ФУНДАМЕНТЫ ЗДАНИИ
Теплотехнический расчет
Thermal performance of buildings — Thermal design of foundations to avoid frost heave, IDT)
Предисловие
1 ПОДГОТОВЛЕН Акционерным обществом «Научно-исследовательский центр «Строительство», Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений имени Н.М. Герсеванова (АО «НИЦ «Строительство» НИИОСП им. Н.М. Герсеванова) на основе официального перевода на русский язык англоязычной версии указанного в пункте 4 международного стандарта, который выполнен Федеральным государственным унитарным предприятием «Российский научно-технический центр информации по стандартизации, метрологии и оценке соответствия» (ФГУП «СТАНДАРТИНФОРМ»)
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 13 декабря 2016 г. № 2031-ст
4 Настоящий стандарт идентичен европейскому стандарту EN ISO 13793:2001 «Тепловая характеристика зданий. Тепловой расчет фундаментов для предупреждения морозного пучения» (EN ISO 13793:2001 «Thermal performance of buildings — Thermal design of foundations to avoid frost heave», IDT).
Наименование настоящего стандарта изменено относительно наименования указанного европейского стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5).
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА
Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)
Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии
8.3.2 Расположение теплоизоляции пола
Глубины заложения фундаментов и теплоизоляция от промерзания, установленные в настоящим разделе, применяются к полу, положение теплоизоляции которого h не превышает 0,6 м.
Если h превышает 0,6 м, то или проводят численные расчеты в соответствии с приложением С, или используют методики для неотапливаемых зданий (раздел 10).
8.3.3 Сопротивление теплопередаче плиты пола
Сопротивлением теплопередаче конструкции пола Rf является общее сопротивление теплопередаче между поверхностью пола и грунта. В него входят любые слои теплоизоляции выше, ниже или внутри пола, вместе с сопротивлением теплопередаче любого напольного покрытия.
Если сопротивление теплопередаче конструкции пола меняется по его площади, то R принимают как среднее значение крайнего участка пола длиной 1 м.
Глубины заложения фундаментов и теплоизоляция от промерзания, установленные в настоящем разделе, применяются к плитам с Rf, не превышающим 5 м 2 К/Вт. Если Rf превышает 5 м 2 К/Вт, то или проводят численные расчеты в соответствии с приложением С, или используют методики для неотапливаемых зданий (раздел 10).
8.4 Теплоизоляция грунта
Теплоизоляция грунта должна быть защищена от рисков механического повреждения. Верхняя поверхность любой теплоизоляции грунта должна находиться не менее чем на 300 мм ниже уровня грунта, если только не имеется облицовочного покрытия, при наличии которого глубина может быть уменьшена до 200 мм.
Данные по ширине теплоизоляции грунта bg, bgw и Ьдс предполагают, что ширина измерена от наиболее удаленной грани фундамента.
Примечание — Для общей ширины теплоизоляции грунта может потребоваться увеличение Ьд, если подошва фундамента выступает за стену, как на рисунке 1а.
Если теплоизоляция грунта применяется вместе с внутренней теплоизоляцией по периметру, то стараются избегать мостиков холода, продолжая теплоизоляцию грунта ниже фундамента до контакта с вертикальной краевой теплоизоляцией (по периметру) [см. рисунок 1с].
Обеспечивают непрерывность теплоизоляции грунта без зазоров, ее адекватную защиту от избыточной влажности с выступов крыши, водостоков и т п. и ее расположение на дренажном слое.
8.5 Неотапливаемые части здания
8.5.1 Общие положения
Если часть здания не отапливается, то к отапливаемой части могут применяться 8.6 и 8.7 при условии применения к неотапливаемой части здания тепловой защиты, описанной в 8.5.2 или 8.5.3 (по обстановке).
8.5.2 Здания с ограниченными неотапливаемыми частями
Неотапливаемые части здания могут рассматриваться как ограниченные, если их размеры не превышают размеров, указанных на рисунке 2, где параметр Lu дан в зависимости от проектного индекса промерзания грунта (таблица 1).
Таблица 1 — Максимальная неотапливаемая длина Lu для ограниченных неотапливаемых частей
Фундамент что это такое по гост
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
ПЛИТЫ ЖЕЛЕЗОБЕТОННЫЕ ЛЕНТОЧНЫХ ФУНДАМЕНТОВ
Reinforced concrete slabs for strip foundations. Specifications
Дата введения 1987-01-01
Постановлением Государственного комитета СССР по делам строительства от 23 сентября 1985 г. N 155 срок введения установлен с 01.01.87
ПЕРЕИЗДАНИЕ. Июль 1994 г.
ВНЕСЕНА поправка, опубликованная в ИУС N 12, 2004 года
Поправка внесена изготовителем базы данных
Настоящий стандарт распространяется на железобетонные плиты из тяжелого бетона для ленточных фундаментов зданий и сооружений.
Плиты предназначены для применения:
— в сухих и водонасыщенных грунтах;
— при расчетной температуре наружного воздуха (средней температуре воздуха наиболее холодной пятидневки района строительства согласно СНиП 2.01.01-82*) до минус 40 °С включ.;
— в зданиях и сооружениях с расчетной сейсмичностью до 9 баллов включ.;
— в грунтах и грунтовых водах с неагрессивной степенью воздействия на железобетонные конструкции.
Допускается применять плиты при расчетной температуре наружного воздуха ниже минус 40 °С, а также в грунтах и грунтовых водах с агрессивной степенью воздействия на железобетонные конструкции при соблюдении дополнительных требований, установленных проектной документацией на конкретное здание или сооружение (согласно требованиям СНиП 2.03.01-84*, СНиП 2.03.11-85) и указанных в заказе на изготовление плит.
1. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ
1.1. Форма и размеры плит, а также их показатели материалоемкости должны соответствовать указанным на чертеже и в табл.1.
Фундамент что это такое по гост
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
ФУНДАМЕНТЫ ЖЕЛЕЗОБЕТОННЫЕ СБОРНЫЕ ПОД КОЛОННЫ КАРКАСА МЕЖВИДОВОГО ПРИМЕНЕНИЯ ДЛЯ МНОГОЭТАЖНЫХ ЗДАНИЙ
Precast reinforced concrete foundations for columns of the framework of different kinds of application for skeletal multistory buildings. Specifications
Дата введения 1982-01-01
Постановлением Государственного комитета СССР по делам строительства от 18 декабря 1980 г. N 202 срок введения установлен с 01.01.82
* ПЕРЕИЗДАНИЕ (август 1988 г.) с Изменением N 1, утвержденным в январе 1987 г. (ИУС 5-87).
Настоящий стандарт распространяется на сборные железобетонные фундаменты стаканного типа, изготовляемые из тяжелого бетона и предназначенные для применения в многоэтажных каркасно-панельных общественных зданиях, производственных и вспомогательных зданиях промышленных предприятий, проектируемых из конструкций серий 1.020-1/83, 1.020.1-2с и возводимых в несейсмических и сейсмических районах, в грунтах и грунтовых водах при неагрессивной, слабо- и среднеагрессивной степенях воздействия на железобетонные конструкции.
Настоящий стандарт не распространяется на фундаменты, предназначенные для применения в зданиях, возводимых на просадочных и вечномерзлых грунтах и на подрабатываемых территориях.
(Измененная редакция, Изм. N 1).
1. ТИПЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ
1.1. Фундаменты подразделяют на типы:
1.2. Форма и размеры фундаментов, а также их показатели материалоемкости должны соответствовать указанным на чертеже и в таблице.
Фундаменты типоразмеров 1Ф12.8; 2Ф12.9
Фундаменты типоразмеров 1Ф15.8; 1Ф15.9; 1Ф18.8; 1Ф18.9; 1Ф21.8; 1Ф21.9; 2Ф15.9; 2Ф18.9; 2Ф18.11; 2Ф21.9; 2Ф21.11
Размеры фундамента, мм
Марка
бетона по прочности
на сжатие
1.1, 1.2. (Измененная редакция, Изм. N 1).
1.3. Несущую способность фундаментов в зависимости от действующих усилий принимают по рабочим чертежам.
1.4. Фундаменты изготовляют с монтажными петлями.
1.5. Фундаменты следует обозначать марками в соответствии с требованиями ГОСТ 23009-78.
Марка фундаментов состоит из одной или двух буквенно-цифровых групп, разделенных тире.
Первая группа содержит обозначение типа фундамента, длину (ширину) подошвы и высоту фундамента в дециметрах (значение высоты округляют до целого числа).
Вторая группа содержит обозначение несущей способности фундамента, а для фундаментов, предназначенных для эксплуатации в агрессивной среде, дополнительно содержит показатель проницаемости бетона, обозначаемый буквой:
Пример условного обозначения (марки) фундамента типа 1Ф с подошвой размерами 1800х1800 мм, высотой 750 мм, первой несущей способности, предназначенного для эксплуатации в неагрессивной среде:
То же, типа 2Ф с подошвой размерами 1500х1500 мм, высотой 900 мм, второй несущей способности, из бетона пониженной проницаемости:
(Измененная редакция, Изм. N 1).
2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
2.1. Фундаменты следует изготовлять в соответствии с требованиями настоящего стандарта и технологической документации, утвержденной в установленном порядке, по рабочим чертежам серий 1.020-1/83 и 1.020.1-2с.
(Измененная редакция, Изм. N 1).
2.2. Фундаменты следует изготовлять в стальных формах, удовлетворяющих требованиям ГОСТ 25781-83.
Допускается изготовлять фундаменты в неметаллических формах, обеспечивающих соблюдение требований настоящего стандарта к качеству и точности изготовления фундаментов.
2.3.1. Фактическая прочность бетона (в проектном возрасте и отпускная) должна соответствовать требуемой, назначаемой по ГОСТ 18105-86* в зависимости от нормируемой прочности бетона, указанной в таблице, и от показателя фактической однородности прочности бетона.
2.3.2. Поставку фундаментов потребителю следует производить после достижения бетоном требуемой отпускной прочности.
Значение нормируемой отпускной прочности бетона фундаментов следует принимать равным 70% марки бетона по прочности на сжатие. При поставке фундаментов в холодный период года значение нормируемой отпускной прочности бетона может быть повышено, но не более 90% марки по прочности на сжатие. Значение нормируемой отпускной прочности бетона должно соответствовать указанному в проектной документации на конкретное здание и в заказе на изготовление фундаментов согласно требованиям ГОСТ 13015.0-83*.
Поставку фундаментов с отпускной прочностью бетона ниже прочности, соответствующей его марке по прочности на сжатие, производят при условии, если изготовитель гарантирует достижение бетоном фундамента требуемой прочности в проектном возрасте, определяемой по результатам испытания контрольных образцов, изготовленных из бетонной смеси рабочего состава и хранившихся в условиях согласно ГОСТ 18105-86.
2.3.3. Морозостойкость бетона фундаментов должна соответствовать марке по морозостойкости, установленной рабочими чертежами проекта конкретного здания согласно требованиям главы СНиП 2.03.01-84* в зависимости от климатических условий района строительства и указанной в заказе на изготовление фундаментов.
2.3.4. Бетон, а также материалы для приготовления бетона фундаментов, применяемых в условиях воздействия агрессивной среды, должны удовлетворять требованиям, установленным проектом здания согласно требованиям главы СНиП 2.03.11-85 и оговоренным в заказе на изготовление фундаментов.
2.3.1-2.3.4 (Измененная редакция, Изм. N 1).
2.3.5. (Исключен, Изм. N 1).
2.3.6. Материалы, применяемые для приготовления бетона, должны удовлетворять требованиям государственных стандартов или утвержденных в установленном порядке технических условий и обеспечивать выполнение технических требований к бетону, установленных настоящим стандартом.
2.4. Арматурные изделия
2.4.1. Форма и размеры арматурных изделий и их положение в фундаментах должны соответствовать указанным в рабочих чертежах.
2.4.2. Для армирования фундаментов следует применять горячекатаную арматурную сталь класса А-III по ГОСТ 5781-82 или термомеханически упрочненную арматурную сталь класса Ат-IIIС по ГОСТ 10884-81*.
Фундамент что это такое по гост
ГОСТ на фундаментные блоки: виды фундаментов, требования к надежному основанию и армирование
Первым делом при строительстве любого дома вам следует задуматься о фундаменте – это основа любой постройки, от которой зависит прочность, надежность и долговечность здания. Сколь прочными бы ни были стены постройки, без качественной основы вы не сможете построить действительно крепкий дом.
Основные требования к фундаментам, выдвигаемые ГОСТом
Прежде, чем рассматривать ГОСТ на основания и фундаменты давайте разберемся в том, какие бывают типы оснований. Дело в том, что каждый тип имеет свои особенности, которые выражаются как в преимуществах, так и в недостатках и ограничениях, которые следует учитывать при их обустройстве.
Виды фундаментов
На сегодняшний день все основания разделяются на две больших группы:
Монолитные основания бывают таких видов:
Такие основания характеризует низкая цена и простота монтажа, который даже новичок может без особого труда выполнить своими руками.
Однако ГОСТ на свайные фундаменты предусматривает такие ограничения:
Совет!
При обустройстве столбчатого основания необходимо следить за тем, чтобы опоры были расположены под всеми нагруженными конструкциями, включая углы, несущие стены и печь.
Блочные основания бывают:
ГОСТ на ленточные фундаменты устанавливает следующие критерии, которым должны удовлетворять плиты:
Как видите, серьезным преимуществом блочных оснований перед монолитными является точное соответствие стандартов, распространяемых на каждый элемент таких конструкций.
ГОСТ на фундаменты такого типа зависит от прочностных характеристик конкретного материала, используемого в работе.
Требования к надежному фундаменту
Армирование оснований
Бетон способен выдержать высокие нагрузки как на сжатие и довольно малые – на растяжение. Поэтому в тех строительных конструкциях, где бетон должен работать на растяжение, следует установить стальные арматурные прутья, которые принимают на себя нагрузку, возникающую вследствие растягивающих напряжений, предотвращая возникновение трещин.
Совет!
Заглублять вертикальную арматуру непосредственно в грунт является недопустимым по всем нормам.
Ржавчина, которая неизбежно поразит заглубленные в грунт части каркаса, неизбежно распространится по всей его поверхности.
В железобетонной конструкции арматуру принято разделять на две группы: рабочую и монтажную. В ленточных конструкциях, работающих на изгиб, продольные прутья считаются рабочими, а горизонтальные и вертикальные поперечины – монтажными, поскольку предназначаются для удержания рабочих элементов в правильном, относительно проектных требований, положении.
ГОСТ Р 57361-2016 Фундаменты зданий. Теплотехнический расчет
Текст ГОСТ Р 57361-2016 Фундаменты зданий. Теплотехнический расчет
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ
ГОСТР
57361—
EN ISO 13793:2001
ФУНДАМЕНТЫ ЗДАНИИ
Теплотехнический расчет
Thermal performance of buildings — Thermal design of foundations to avoid frost heave,
Предисловие
1 ПОДГОТОВЛЕН Акционерным обществом «Научно-исследовательский центр «Строительство». Научно-исследовательский, проектно-изыскательский и конструкторско-технологический институт оснований и подземных сооружений имени Н.М. Герсеванова (АО «НИЦ «Строительство» НИИОСП им. Н.М. Герсеванова) на основе официального перевода на русский язык англоязычной версии указанного в пункте 4 международного стандарта, который выполнен Федеральным государственным унитарным предприятием «Российский научно-технический центр информации по стандартизации, метрологии и оценке соответствия» ()
2 ВНЕСЕН Техническим комитетом по стандартизации ТК465 «Строительство»
3 УТ8ЕРЖДЕН И 8ВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 13 декабря 2016 г. N9 2031-ст
4 Настоящий стандарт идентичен европейскому стандарту EN ISO 13793:2001 «Тепловая характеристика зданий. Тепловой расчет фундаментов для предупреждения морозного лучения» (EN ISO 13793:2001 «Thermal performance of buildings — Thermal design of foundations to avoid frost heave», IDT).
Наименование настоящего стандарта изменено относительно наименования указанного европейского стандарта для приведения в соответствие с ГОСТ Р 1.5—2012 (пункт 3.5).
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА
Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. Мр 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — е ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет ()
Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии
Содержание
1 Область применения. 1
2 Нормативные ссылки. 1
3 Термины, обозначения и единицы измерения. 2
4 Принципы проектирования. 4
5 Свойства материала. 5
6 Климатические данные. 6
7 Фундаменты. Глубины заложения, превышающие глубины промерзания в ненарушенном грунте. 7
8 Полы из плит на грунтовом основании для отапливаемых зданий. 7
9 Подвесные полы для отапливаемых зданий. 14
10 Неотапливаемые здания. 17
Приложение А (обязательное) Определение и расчет индекса промерзания. 20
Приложение В (обязательное) Численные расчеты. 23
Приложение С (обязательное) Проектные данные для полов из плит на грунтовом основании
на базе критерия 0 *С. 25
Приложение D (справочное) Подверженность пучению грунта. 28
Приложение Е (справочное) Примеры с решением. 29
Приложение ДА (справочное) Сведения о соответствии ссылочных международных
стандартов национальным стандартам. 32
ГОСТ Р 57361—2016/EN ISO 13793:2001
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФУНДАМЕНТЫ ЗДАНИЙ Теплотехнический расчет
Foundations of buddings. Calculation and design rules taking into aocount temperature influences
Дата введения — 2017—07—01
1 Область применения
8 настоящем стандарте представлены упрощенные методики теплофиэического расчета фумда* ментов зданий для исключения возможности возникновения морозного пучения грунта.
Стандарт применяется к фундаментам, устраиваемым на пучинистых грунтах, для зданий с полами из плит на грунтовом основании и подвесными полами.
Стандарт распространяется как на отапливаемые, так и на неотапливаемые здания, но в него не включены другие сооружения, требующие защиты от промерзания (например, дороги, водопровод в грунте и др.).
Стандарт не применяется к холодильным складам и ледовым каткам.
Стандарт применяется в климатических районах со средней годовой температурой воздуха выше О *С. но не применяется в зонах распространения многолетнемерзлых грунтов, где средняя годовая температура воздуха ниже О *С.
2 Нормативные ссылки
Настоящий стандарт включает в себя нормативные и справочные ссылки, положения из других публикаций. Эти нормативные ссылки приведены в соответствующих местах в тексте, а публикации перечислены ниже. Для нормативных ссылок последующие изменения или пересмотры любой из этих публикаций применяются к настоящему стандарту, только когда включены в него в качестве изменения или пересмотра. Для недатированных ссылок необходимо использовать самые последние издания публикации (включая изменения).
ISO 6946. Building components and building elements — Thermal resistance and thermal transmittance — Calculation method (Компоненты и элементы строительные.Теплостойкость и коэффициент теплопередачи. Метод расчета)
ISO 7345. Thermal insulation — Physical quantities and definitions (Теплоизоляция. Физические величины и определения)
ISO 10456. Building materials and products — Tabulated design values and procedures for determining declared and design thermal values (Теплоизоляция. Строительные материалы и изделия. Определение заявленных и расчетных значений тепловых свойств
11 Отменен. Действует ISO 10211.
3 Термины, обозначения и единицы измерения
3.1 Термины и определения
В настоящем стандарте применены термины no ISO 7345, а также следующие термины с соответствующими определениями:
3.1.1 пол из плит на грунтовом основании (slab on ground floor): Конструкция пола, расположенного непосредственно на грунте по всей площади сооружения.
3.1.2 подвесной пол (suspended floor): Конструкция пола, в которой пол удерживается над грунтом. образуя воздушное пространство между полом и грунтом.
Примечание — Эта пустота, называемая подпольем или погребом, может проветриваться или нет. но не является частью жилого пространства.
3.1.3 вертикальная теплоизоляция (краевая, по периметру) (vertical edge insulation): Теплоизоляция. расположенная вертикально к фундаменту внутри и/или снаружи, либо внутри самого фундамента.
3.1.4 теплоизоляция грунта (ground insulation): Теплоизоляция, расположенная горизонтально (или почти горизонтально) ниже пола, снаружи здания.
Примечание — См. рисунок 1.
3.1.5 индекс промерзания грунта (индекс мороза) (freezing index): Увеличенная в 24 раза сумма разности между 0 в С и средней суточной температурой наружного воздуха, накопленная за сутки в течение зимнего периода(еключая как положительные, так и отрицательные разности).
3.1.6 зимний период (freezing season): Период, в течение которого средне суточная температура наружного воздуха остается ниже О *С, вместе с любыми периодами промерзания/таяния в любом конце этого периода, если они кончаются общим замерзанием.
3.1.7 глубина промерзания (frost depth): Глубина проникновения отрицательных температур в грунт с образованием льда.
3.1.8 глубина заложения фундамента (foundation depth): Глубина от поверхности грунта до подошвы фундамента.
Примечание — Если фундаменты опираются на слой хорошо дренированного материала, который не подвержен промерзанию, толщина такого слоя может быть включена в глубину заложения фундамента.
3.1.9 грунт, подверженный пучению (frost-susceptible soil): Тип грунта, который может вызвать действие сил морозного пучения при его замерзании.
3.1.10 расположение теплоизоляции пола (floor insulation position): Высота нижней поверхности слоя теплоизоляции пола над поверхностью грунта.
Примечание — Если у пола нет теплоизоляции, то эту величину измеряют от поверхности пола.
3.2 Обозначения и единицы измерения
Ниже приведены основные используемые обозначения. Прочие обозначения определены там. где они использованы в тексте настоящего стандарта.
Ширина (меньший размер) здания
Ширина теплоизоляции грунта, измеренная от наружного края подошвы фундамента
Ширина теплоизоляции грунта на углу
Ширина теплоизоляции грунта вдоль стены
Проектный индекс мороза
Индекс мороза, который статистически превышен один раз за период е п лет
Максимальная глубина промерзания нетронутого грунта без снега
Глубина заложения фундамента для стен
Глубина заложения фундамента для углов
Глубина заложения вертикальной теплоизоляции
Глубина заложения теплоизоляции пола
Длина теплоизоляции на углах (вдоль наружной поверхности стены)
Сопротивление теплопередаче конструкции лола(среднее значениедля 1 м крайнего участка пола)
Сопротивление теплопередаче вертикальной теплоизоляции
Сопротивление теплопередаче теплоизоляции грунта
Сопротивление теплопередаче теплоизоляции грунта на углу
Сопротивление теплопередаче теплоизоляции грунта вдоль стены
Средняя годовая наружная температура воздуха
Средняя месячная внутренняя температура воздуха
с) Ленточный фундамент с теплоизоляцией грунта и вертикальной теплоизоляцией
Рисунок 1 — Примеры вертикальной теплоизоляции и теплой золя грунта в конструкциях фундаментов (лист 1)
в) Сплошная конструкция с теплоизоляцией грунта и вертикальной теплоизоляцией
И Сплошная конструкция над подсыпкой из щебня (теплоизоляция пола не рассматривается, т.к. Ъ 6 Дж/м 3
— объемная масса в сухом состоянии. р = 1350 кг/м*
• содержание воды (степень водонасыщения равна 90 %). w — 450 кг/м 3
Для большинства типов подверженных пучению грунтов глубина промерзания рядом со зданием незначительно отличается от глубины, определенной по вышеуказанным значениям. Однако если реальные свойства грунта значительно отличаются от перечисленных выше значений, следует провести численные расчеты в соответствии с приложением С.
Примечание 2 — В качестве общего правила применяются проектные данные в разделах 8 — 10 для грунтов с объемной массой в сухом состоянии 8 диапазоне от 1100 до 1600 кг/м 3 и водонасыщением более 80 %.
Примечание 3 — Кода используется теплоизоляция грунта, соответствующими свойствами являются свойства грунта, расположенного вблизи здания. Если теплоизоляция грунта не применяется, то свойства обратной засыпки могут быть основными, особенно если зона обратной засыпки относительно широка. Обратная засыпка (которая хорошо дренируется во избежание примерзания) может локагъно повысить глубину замерзания из-за отсутствия воды в грунте и связанной с ней теплоты фазовых переходов.
5.2 Свойства строительных материалов
При определении сопротивления теплопередаче любого строительного материала применяют соответствующее проектное значение либо рассчитывают его согласно ISO 10456. либо принимают его по
табличным данным. Сопротивление теплопередаче изделий, используемых ниже уровня поверхности грунта, должно отражать влажностные условия применения.
Примечание — На влажностные условия может влиять как обогрев, так и отсутствие обогрева здания, а часто более значигегъно соседство с необогреваемыми зданиями.
Если теплопроводность задана, то его сопротивление теплопередаче получают как толщину, де-ленную на теплопроводность. Используемая толщина должна обеспечивать любое требуемое сжатие изделия.
Предварительно следует убедиться, что любой изолирующий материал, подвергаемый нагрузке на сжатие, имеет соответствующие прочностные и деформационные характеристики.
Если для защиты от промерзания требуется теплоизоляция грунта, необходимо предпринять меры для гарантии того, не произойдет ее повреждение или перемещение после завершения строительства. Следует информировать балансодержателя здания о наличии и расположении теплоизоляции грунта и ее назначении.
6 Климатические данные
6.1 Проектный индекс промерзания грунта
Теплоизоляция, необходимая для защиты от промерзания, зависит от суровости зимнего перио-да. выражается в единицах индекса промерзания грунта вместе со средней годовой наружной темпе* ратурой воздуха.
Проектный индекс промерзания Fd выражается в единицах значения индекса промерзания F„, которое статистически превышено один раз за п лет для рассматриваемой местности, на основании зарегистрированных метеорологических данных, и рассчитано в соответствии с приложением А. Знача* ние Fn имеет 1 в о вероятность превышения для данной зимы.
Выбрав значение л. принимают F„ по таблицам или каргам для рассматриваемой местности.
Соответствующее значение л относится к предполагаемой долговечности здания и чувствительности здания к морозному пучению.
Для постоянных конструкций используют F100 или FM.
Примечание — На практике или F50 можно рассматривать как эквиваленты, поскольку разница между ними очень мала, и можно использовать любой индекс (в зависимости от наличия).
Для проектирования зданий, которые могут претерпеть некоторое перемещение, или для временных сооружений может использоваться пониженный индекс промерзания (например. F20, F10, Fs).
6.2 Глубина промерзания для ненарушенных грунтов
Наибольшая глубина промерзания в ненарушенном грунте (т.е. незащищенном зданиями, снежным покровом или растительностью) зависит от климата (индекса промерзания и средней годовой температуры воздуха) и теплофизических свойств грунта.
Примечание — Проектные значения максимальной глубины промерзания в ненарушенном, однородном. подверженном пучению грунте без снежного покрова Н можно найти для некоторых местностей е картах или таблицах нормативных документах, действующих на национальном уровне
Если Н не известно, приблизительное значение может быть рассчитано по формуле:
где Fd— проектный индекс замерзания грунта. К ч;
Xf — теплопроводность замерзшего грунта. Вт/(мК);
L — скрытая теплота замерзшей воды в грунте на объем грунта. Дж/м э :
С — теплоемкость незамерзшего грунта на объем. Дж/(м*К); бв — средняя годовая температура наружного воздуха. °С.
Если соответствующие данные грунта не приведены, пользуются данными по 5.1.
7 Фундаменты. Глубины заложения, превышающие глубины промерзания
в ненарушенном грунте
Фундаменты любого здания могут проектироваться так. что глубина заложения фундамента Н, равна, как минимум, максимальной глубине промерзания ненарушенного грунта без снежного покрова Wo-
Если Н, > Hq, то фундаменты соответственно защищают от морозного пучения, и никакой краевой теплоизоляции не требуется.
Если фундаменты находятся на слое хорошо дренированного материала, который не подвержен пучению, то толщина такого слоя может включаться в Hf.
Примечание —Для климата с Fa в С для всех го);
b) некоторые части отапливаются, а некоторые нет. при условии, что в обогреваемых частях Qlm й 17 в С для всех го. и что неотапливаемые части обрабатываются, как описано в 8.5;
c) 5 *С S в(/п в С в любом месяце, то защита от промерзания должна проектироваться как для неотапливаемых зданий (см. раздел 10).
Для данных, основанных на критерии проектирования 0 *С ниже фундаментов, см. приложение С.
Во всех случаях обеспечивают вертикальную краевую теплоизоляцию, как установлено в 8.6.
Теплота, идущая от здания, поднимает температуру грунта на углах меньше, чем вдоль сторон здания. Поэтому на углах могут потребоваться дополнительные меры, или углубление фундаментов на углах, или дополнительная теплоизоляция.
Существуют три варианта получения необходимой защиты от промерзания:
1) применяют только вертикальную теплоизоляцию, без теплоизоляции грунта — вынимают грунт из-под фундаментов до глубины, приведенной в 8.7.1 (на углах требуется большая глубина заложения фундаментов, чем вдоль остальных стен);
2) применяют теплоизоляцию грунта только на углах во избежание увеличения глубины фундамента на углах — глубину фундамента принимают как для стен в перечислении 1). см. 8.7.2;
3) применяют ограниченную глубину заложения фундамента (не менее 0.4 м), стакой же глубиной заложения фундамента вокруг здания — обеспечивают теплоизоляцию грунта вокруг здания, но повышают на углах, см. 8.7.3.
Глубина заложения фундамента и/или протяженность теплоизоляции фунта определяются проектным индексом промерзания Рь.
Проектируют теплоизоляцию пола, чтобы получить удовлетворительные температуры пола и экономию энергии (т е. независимость от проблемы морозного пучения).
Примечание — Применение вертикальной краевой теплоизоляции и теплоизоляции грунта повышает температуры поверхности пола и уменьшает тепловые потери по краю пола.
Глубины заложения фундаментов и теплоизоляции от промерзания, установленные в настоящем разделе, применяются к зданиям с шириной В не менее 4 м.
Если В менее 4 м. то фундаменты должны закладываться глубже или. при наличии теплоизоляции грунта, согласно методикам, как для углов здания, но располагаться вокруг здания.
8.3.2 Расположение теплоизоляции пола
Глубины заложения фундаментов и теплоизоляция от промерзания, установленные е настоящим разделе, применяются к полу, положение теплоизоляции которого h не превышает 0.6 м.
Если b превышает 0.6 м. то или проводят численные расчеты в соответствии с приложением С, или используют методики для неотапливаемых зданий (раздел 10).
8.3.3 Сопротивление теплопередаче плиты пола
Сопротивлением теплопередаче конструкции пола Rf является общее сопротивление теплопередаче между поверхностью пола и грунта. В него входят любые слои теплоизоляции выше, ниже или внутри пола, вместе с сопротивлением теплопередаче любого напольного покрытия.
Если сопротивление теплопередаче конструкции пола меняется по его площади, то R . и Ддс предполагают, что ширина измерена от наиболее удаленной грани фундамента.
Примечание — Для общей ширины теплоизоляции фунта может потребоваться увеличение t>g, если подошва фундамента выступает за стену, как на рисунке 1а.
Если теплоизоляция грунта применяется вместе с внутренней теплоизоляцией по периметру, то стараются избегать мостиков холода, продолжая теплоизоляцию грунта ниже фундамента до контакта с вертикальной краевой теплоизоляцией (по периметру) [см. рисунок 1с).
Обеспечивают непрерывность теплоизоляции грунта без зазоров, ее адекватную защиту от избыточной влажности с выступов крыши, водостоков и т п. и ее расположение на дренажном слое.
8.5 Неотапливаемые части здания
8.5.1 Общие положения
Если часть здания не отапливается, то к отапливаемой части могут применяться 8.6 и 8.7 при условии применения к неотапливаемой части здания тепловой защиты, описанной в 8.5.2 или 8.5.3 (по обстановке).
8.5.2 Здания с ограниченными неотапливаемыми частями
Неотапливаемые части здания могут рассматриваться как ограниченные, если их размеры не превышают размеров, указанных на рисунке 2. где параметр дан в зависимости от проектного индекса промерзания грунта (таблица 1).
Таблица 1 — Максимальная неотапливаемая длина Ц, для ограниченных неотапливаемых частей
От 30 000 до 40 000
От 40 000 до 50 000
1 — отапливаемая часть; 2 — неотапливаемая часть
Рисунок 2 — Определение ограниченной неотапливаемой части плиты пола
Примечание — d^, — максимальная длина неотапливаемой части, окруженная с трех сторон отапливаемыми зонами здания. Максимальная длина вдруг их случаях меньше, чем как показано на рисунке 2.
Для ограниченных неотапливаемых частей:
• изолируют лол неотапливаемой части, так чтобы теплостойкость пола была не менее минимального сопротивления теплопередаче грунта Rg для не отапливаемых зданий согласно 10.2 (таблица 11 или 12);
• по внешнему периметру неотапливаемой части устанавливают вертикальную теплоизоляцию согласно 8.6;
• если неотапливаемая часть окружена с трех сторон отапливаемыми зонами здания (рисунок 2а). то применяют защиту от замерзания, как для углов согласно 8.7 по наружному периметру неотапливаемой части и для расстояния Lc с каждой его стороны, где значения Lc приведены по зависимости от индекса промерзания грунта в таблице 5;
• если неотапливаемая часть окружена только с одной или с двух сторон отапливаемыми зонами здания [Рисунки 2Ь. 2с]. то по наружному периметру неотапливаемой части и для расстояния Lc для каждой ее стороны применяют теплоизоляцию грунта шириной 0.5&9. значение £>д в соответствии с
10.2 (таблица 10). с сопротивлением теплопередаче /?д, как для неотапливаемых зданий согласно 10.2 (таблица 11 или Таблица 12). где значения Lc приведены в зависимости от индекса промерзания грунта по таблице 5:
• избегают мостиков холода во внутреннем периметре неотапливаемой части.
8.5.3 Здание с более протяженными неотапливаемыми частями
8.6 Вертикальная теплоизоляция
Во всех случаях обеспечивают вертикальную теплоизоляцию с сопротивлением теплопередаче не менее чем R^ приведенные в таблице 2. Применяют линейную интерполяцию, чтобы получить промежуточные значения.
Таблица 2 — Минимальное сопротивление теплопередаче вертикальной теплоизоляции для полов плита по грунту Rv (м’-К/Вт)
0.0 30 000 Кч), где значения Hi, Н(С и Lc приведены в таблице 3 в зависимости от проектного индекса промерзания грунта.
Таблица 3 — Глубина заложения фундамента для пола из плит на грунтовом основании без теплоизоляции грунта
30 000 дс. Значения £>0С приведены в таблице 4. См. также рисунок 3.
Таблица 4 — Глубина заложения фундамента и теплоизоляция на углу для пола из плит на грунтовом основании
1 — минимальная Ь^.: 2 — минимальная Rge: 3 — ширина теплоизоляции грунта 4 — сопротивление теплопередаче теплоизоляции грунта на углах Ядс
Рисунок 4 — Ширина и сопротивление теплопередаче теплоизоляции грунта на углах и на ограниченных неотапливаемых частях для пола из плит на грунтовом основании с Н( 0.4 м
250 500 750 1000 1250
1 — минимальная 2 — минимальная Rg#’. 3 — ширина теплоизоляции грунта вдоль стаи Ь^, 4 — сопротивление теплопередаче теплоизоляции грунта вдоль степ R^
Рисунок 5 — Ширина и сопротивление теплопередаче теплоизоляции грунта вдоль стен, для пола из плит
на грунтовом основами с ^ S 0.4 м
Таблица 5 —Длина теплоизоляции на углу
30 000 e C £ 8jffl г К/Вт.
4> Сопротивление теплопередаче подвешенной части пола не превышает 8 м 2 КУВт (без теплоизоляции грунта) или 5 м 2 К/Вт (с изоляцией грунта).
5) Сопротивление теплопередаче стены фундамента выше наружного уровня грунта составляет не менее чем соответствующее значение по таблице 6. когда низ конструкции пола располагается на высоте не более чем 0.6 м над поверхностью грунта.
Если низ конструкции пола располагается выше, чем 0,6 м над поверхностью грунта, то это сопротивление теплопередаче должно быть повышено так. чтобы скорость общего теплового потока, проходящего через стену фундамента над наружным уровнем грунта, не превышала скорость для стены высотой 0.6 м. имеющей сопротивление теплопередаче, установленное в таблице 6.
6) Вертикальная теплоизоляция с сопротивлением теплопередаче не менее установленной в таблице 6 применяется до глубины не менее 0,6 м. если отсутствует теплоизоляция грунта, или до нижней поверхности теплоизоляции грунта при наличие теплоизоляции грунта.
7) Скорость вентиляции подполья не превышает 2 м 3 на 1 м 2 плиты пола в час.
Примечание — Метод оценки скорости вентиляции приведен в ISO 13370, Термические характеристики зданий. Теплообмен через грунт. Методы расчета.
Если любое из выше указанных условий не выполнено, то фундаменты проектируют как для неотапливаемых зданий в соответствии с разделом 10 или проводят численные расчеты в соответствии с приложением С.
Таблица 6 — Минимальное сопротивление теплопередаче стен фундаментов над грунтом и вертикальной теплоизоляции ниже грунта для подвесных полов
5 000 91 Менее чем 0.35.
9.2.3 Фундаменты без теплоизоляции грунта: короткие здания
Здание считается коротким, если его длина составляет не более трех его ширин.
Глубина заложения фундамента должна быть не менее чем глубина, приведенная в таблице 8. вокруг здания.
Примечание — Вокруг коротких зданий требуется большая глубина заложения фундаментов, поскольку для данной ширины они имеют больше потерь (на м’ площади пола) через грунт и через стены подпольного пространства по сравнению с протяженными зданиями, возникающих при пониженной температуре в подпогье.
Таблица 8 — Глубина заложения фундамента подвесных полов: короткие здания и углы протяженных зданий
Проектный индекс промерзания грунта F a, К-ч
Скорость вентиляции. мУ(м* ч)
20 000 a> Менее чем 0.35.
10 Неотапливаемые здания
10.1 Общие положения
Настоящий раздел применяется к фундаментам, для которых Н( йот угла или края фундамента; см.рисунок 6.
Минимальное сопротивление теплопередаче теплоизоляции грунта Ra определяют по таблице 11 для фундаментов на глубине не менее чем 0.4 м или по таблице 12 для фундаментов на глубине не менее 1,0 м. Допускается применение линейной интерполяции в этих таблицах для промежуточных значений, а также между таблицами 11 и 12 для промежуточных глубин фундаментов между 0,4 и 1.0 м.
Примечание 2 — Тоже самое значение применяется вдоль стен и на углах.
Примечание 3 — Значения сопротивления теплопередаче более, чем 5.0м*-К/Вт в таблице 11 поставлены в скобки для указания того, что эта обычно более практичный вариант для увеличения глубины заложения фундамента.
Примечание 4 — Если F 2 К/Вт на 100 мм увеличения толщины этого слоя выше 100 мм.
10.5 Дополнительное грунтовое покрытие над теплоизоляцией
Минимальное сопротивление теплопередаче теплоизоляции грунта R9 и ее минимальная ширина Ь9 установленные в 10.3. могут быть обе уменьшены путем размещения слоя грунта над теллоизоляци-ей толщиной более 300 мм.
Ь9 можно уменьшить на 0.1 м на 100 мм увеличения толщины грунтового покрытия выше 300мм.
Примечание — Увеличение грунтового покрытия может быть ограничено требованием устройства теплоизоляции выше уровня подземных вод (см. 10.2>.
Определение и расчет индекса промерзания
А.1 Общие положения
В настоящем приложении приведен метод расчета проектного индекса промерзания F(j по метеорологическим данным средних суточных наружных температур воздуха для рассматриваемой местности.
В А2 определен расчет индекса промерзания F для одной конкретной зимы. Проектные данные в разделах 8 — 10 основаны на индексе промерзания Fn, который статистически превышен один раз за п лет. например F10, Fyy F!0q. Данные значения можно получить из набора индивидуальных значений F. рассчитанных для нескольких зим после статистической обработки, описанной в АЗ.
А.2 Расчет индекса промерзания для одной зимы
Индекс промерзания равен увеличенной в 24 раза сумме разности между температурой замерзания и ежедневной суточной средней наружной температурой воздуха:
где F — индекс промерзания для одной зимы. К-ч: в, = 0*С;
й/ — ежедневная суточная средняя наружная температура воздуха, *С; и в эту сумму входят все дни морозного периода Источник