Естественность пользовательского интерфейса означает что
Понятие пользовательского интерфейса и его свойства.
Пользовательский интерфейс есть совокупность модели представления ИС, средств и способов взаимодействия пользователей с моделью представления, а также компонентов, обеспечивающих формирование такой модели в процессе функционирования ИС.
Под моделью представления ИС понимается описание предметной области (ПрО), формируемое с помощью компьютерных (визуальных и звуковых) объектов, отражающих состав и взаимодействие реальных сущностей ПрО.
Средства и способы взаимодействия с моделью представления определяются составом аппаратного и программного обеспечения, имеющегося в распоряжении пользователя, а также от характера решаемой задачи.
Эффективность работы пользователя определяется не только функцио-нальными возможностями имеющихся в его распоряжении аппаратных и программных средств, но и доступностью этих возможностей. В свою очередь, полнота использования потенциальных возможностей имеющихся ресурсов зависит от качества пользовательского интерфейса (ПИ).
Таким образом, качество ПИ является самостоятельной характеристикой ПО, сопоставимой по значимости с такими его показателями, как надежность и эффективность использования вычислительных ресурсов.
Для того, чтобы ПИ был качественным (эффективным), он должен обладать следующими свойствами:
1. Естественность интерфейса, т.е. его способность выдавать сообще-ния и результаты, которые не требуют дополнительных пояснений.
2. Согласованность интерфейса, т.е. его способность предоставлять пользователям возможность переносить имеющиеся знания на новые задания, осваивать новые аспекты быстрее, и благодаря этому фокусировать внимание на решаемой задаче, а не тратить время на уяснение различий в использовании тех или иных элементов управления, команд и т.д.
Согласованность рассматривают в трех аспектах:
согласованность в пределах приложения (одна и та же команда должна выполнять одни и те же функции, где бы она не встретилась, причем одним и тем же образом);
согласованность в пределах рабочей среды (приложение должно «опи-раться» на знания и навыки пользователей, которые он получил ранее при работе в среде ОС);
согласованность в использовании названий (поведение каждого объекта интерфейса должно соответствовать тому названию, которое ему присвоено).
3. Дружественность интерфейса, т.е. его способность предотвращать ситуации, которые, вероятно, закончатся ошибками, вследствие неправильного ввода команды или данных пользователем.
4. Обратимость интерфейса, т.е. его способность каждое действие пользователей сопровождать визуальным или звуковым подтверждением того, что приложение восприняло команду.
5. Простота интерфейса, т.е. легкость в его использовании, изучении и в предоставлении доступа ко всему перечню функциональных возможностей, предусмотренных данным приложением.
6. Гибкость (адаптивность) интерфейса, т.е. его способность учитывать уровень подготовки и производительность труда пользователя.
7. Эстетическая привлекательность, т.е. его способность приложения обеспечить формирование на экране такой среды, которая не только содействовала бы пониманию пользователем представленной информации, но и позволяла бы сосредоточиться на наиболее важных ее аспектах.
Качество ПИ оценивается на основе следующих частных показателей.
1. Время, необходимое определенному пользователю для достижения заданного уровня знаний и навыков при работе с приложением (например, лицо боевого расчета объекта ИС должно освоить систему команды приложения, установленного на его АРМ за 8 часов).
2. Сохранение полученных рабочих навыков по истечении некоторого времени (например, после недельного перерыва ЛБР должно выполнить определенную последовательность операций за заданное время).
3. Скорость решения задачи с помощью данного приложения (например, ЛБР должно обработать за час не менее 10 документов с ошибкой не более 1%).
4. Субъективная удовлетворенность пользователя при работе с системой, которая количественно может быть выражена в процентах или оценкой по n-бальной шкале.
В основе эффективных ПИ лежат соглашения, принятые в 1987 г. корпорацией IBM в рамках проекта по созданию единой среды разработки приложений (Systems Application Architecture – SAA).
Целями проекта SSA явились:
1. Повышение производительности труда программистов и конечных пользователей.
2. Облегчение эксплуатации и сопровождения ПО.
3. Повышение эффективности распределенной обработки информации.
4. Увеличение отдачи инвестиций в разработку информационных систем.
Проект SSA содержит 4 компонента:
cоглашения по интерфейсу пользователя (Common User Access – CUA);
соглашения по программному интерфейсу (Common Programming Inter-face – CPI);
соглашения по разработке приложений (Common Applications – CA);
соглашения по коммуникациям (Common Communications Support – CCS).
В рамках соглашения CUA и дополнительных исследований в этой области (Apple, Microsoft и др.) были определены следующие концепции построения ПИ:
использование единой рабочей среды пользователя в виде так называемого Рабочего стола;
объектно-ориентированный подход к описанию заданий пользователей;
использование окон в качестве основной формы отображения данных;
применение средств неклавиатурного ввода, основанного на выборе и указании с помощью манипулятора «мышь».
Хотя в настоящее время единого официально утвержденного стандарта ПИ пока нет, но уже сейчас можно утверждать каким требованиям должен отвечать стандартизованный ПИ:
1. ПИ должен обладать перечисленными ранее свойствами
2. ПИ должен быть узнаваемым, т.е. содержать стандартные базовые элементы (окна, панели, списки, меню, кнопки и т.д.), каждый из которых должен иметь «узаконенное» название и определенный перечень свойств. Например, нельзя назвать меню «списком» и при этом использовать его для вывода результатов расчета.
Таким образом, для создания эффективного ПИ необходимо соблюдать следующие правила:
1. ПИ необходимо проектировать и разрабатывать как отдельный компонент приложения в соответствии с требованиями стандартизации.
2. Необходимо учитывать возможности и особенности аппаратно-программных средств, на базе которых реализуется интерфейс.
3. Процесс разработки ПИ должен носить итерационный характер, его обязательным элементом должно быть согласование результатов с потенциальным пользователем.
4. Средства и методы реализации интерфейса должны обеспечивать возможность его адаптации к потребностям пользователя.
Дата добавления: 2015-04-21 ; просмотров: 27 ; Нарушение авторских прав
6. Проектирование пользовательского интерфейса. Принципы построения интерфейса. Количественный анализ интерфейса. Измерение эффективности интерфейса.
Пользовательский интерфейс – это совокупность информационной модели проблемной области, средств и способов взаимодействия пользователя с информационной моделью, а также компонентов, обеспечивающих формирование информационной модели в процессе работы программной системы.
Под информационной моделью понимается условное представление проблемной области, формируемое с помощью компьютерных (визуальных и звуковых) объектов, отражающих состав и взаимодействие реальных компонентов проблемной области.
Средства и способы взаимодействия с информационной моделью определяются составом аппаратного и программного обеспечения, имеющегося в распоряжении пользователя, и от характера решаемой задачи. Эффективность работы пользователя определяется не только функциональными возможностями имеющихся в его распоряжении аппаратных и программных средств, но и доступностью для пользователя этих возможностей. В свою очередь, полнота использования потенциальных возможностей имеющихся ресурсов зависит от качества пользовательского интерфейса.
Качество пользовательского интерфейса является самостоятельной характеристикой программного продукта, сопоставимой по значимости с такими его показателями, как надежность и эффективность использования вычислительных ресурсов.
Согласно исследованиям, проведенным компанией Xerox и ее сотруднику Дэвиду Лиддлу, пользовательский интерфейс состоит из следующих основных компонентов, представленных в виде айсберга.
Основные принципы проектирования пользовательского интерфейса
Основное достоинство хорошего интерфейса пользователя заключается в том, что пользователь всегда чувствует, что он управляет программным обеспечением, а не программное обеспечение управляет им.
Для создания у пользователя такого ощущения «внутренней свободы» интерфейс должен обладать целым рядом свойств:
Дружественность интерфейса (Принцип «прощения пользователя»)
Принцип «обратной связи».
Естественность интерфейса. Естественный интерфейс — такой, который не вынуждает пользователя существенно изменять привычные для него способы решения задачи. Это, в частности, означает, что сообщения и результаты, выдаваемые приложением, не должны требовать дополнительных пояснений.
Согласованность интерфейса. Согласованность позволяет пользователям переносить имеющиеся знания на новые задания, осваивать новые аспекты быстрее, и благодаря этому фокусировать внимание на решаемой задаче, а не тратить время на уяснение различий в использовании тех или иных элементов управления, команд и т.д. Обеспечивая преемственность полученных ранее знаний и навыков, согласованность делает интерфейс узнаваемым и предсказуемым.
Согласованность важна для всех аспектов интерфейса, включая имена команд, визуальное представление информации и поведение интерактивных элементов. Для реализации свойства согласованности в создаваемом программном обеспечении, необходимо учитывать его различные аспекты.
Согласованность в пределах продукта. Одна и та же команда должна выполнять одни и те же функции, где бы она ни встретилась, причем одним и тем же образом.
Согласованность в пределах рабочей среды. Поддерживая согласованность с интерфейсом, предоставляемым операционной системой (например, ОС Windows), пользовательское приложение может «опираться» на те знания и навыки пользователя, которые он получил ранее при работе с другими приложениями.
Согласованность в использовании метафор. Если поведение некоторого программного объекта выходит за рамки того, что обычно подразумевается под соответствующей ему метафорой, у пользователя могут возникнуть трудности при работе с таким объектом.
Дружественность интерфейса (Принцип «прощения пользователя»). Пользователи обычно изучают особенности работы с новым программным продуктом методом проб и ошибок. Эффективный интерфейс должен принимать во внимание такой подход. На каждом этапе работы он должен разрешать только соответствующий набор действий и предупреждать пользователей о тех ситуациях, где они могут повредить системе или данным; еще лучше, если у пользователя существует возможность отменить или исправить выполненные действия.
Даже при наличии хорошо спроектированного интерфейса пользователи могут делать те или иные ошибки. Эти ошибки могут быть как «физического» типа (случайный выбор неправильной команды или данных) так и «логического» (принятие неправильного решения на выбор команды или данных). Эффективный интерфейс должен позволять предотвращать ситуации, которые, вероятно закончатся ошибками. Он также должен уметь адаптироваться к потенциальным ошибкам пользователя и облегчать ему процесс устранения последствий таких ошибок.
Принцип «обратной связи». Необходимо всегда обеспечивать обратную связь для действий пользователя. Каждое действие пользователя должно получать визуальное, а иногда и звуковое подтверждение того, что программное обеспечение восприняло введенную команду; при этом вид реакции, по возможности, должен учитывать природу выполненного действия.
Обратная связь эффективна в том случае, если она реализуется своевременно, т.е. как можно ближе к точке последнего взаимодействия пользователя с системой. Когда компьютер обрабатывает поступившее задание, полезно предоставить пользователю информацию относительно состояния процесса, а также возможность прервать этот процесс в случае необходимости. Ничто так не смущает не очень опытного пользователя, как заблокированный экран, который никак не реагирует на его действия. Типичный пользователь способен вытерпеть только несколько секунд ожидания ответной реакции от своего электронного «собеседника».
Простота интерфейса. Интерфейс должен быть простым. При этом имеется в виду не упрощенчество, а обеспечение легкости в его изучении и в использовании. Кроме того, он должен предоставлять доступ ко всему перечню функциональных возможностей, предусмотренных данным приложением. Реализация доступа к широким функциональным возможностям и обеспечение простоты работы противоречат друг другу. Разработка эффективного интерфейса призвана сбалансировать эти цели.
Один из возможных путей поддержания простоты — представление на экране информации, минимально необходимой для выполнения пользователем очередного шага задания. В частности, следует избегать многословных командных имен или сообщений. Непродуманные или избыточные фразы затрудняют пользователю извлечение существенной информации.
Другой путь к созданию простого, но эффективного интерфейса — размещение и представление элементов на экране с учетом их смыслового значения и логической взаимосвязи. Это позволяет использовать в процессе работы ассоциативное мышление пользователя.
Например, метафора «рабочего стола» предполагает, что интерфейс обеспечивает пользователю возможность доступа к множеству разных информационных источников и позволяет ему легко переключаться с одного источника на другой (т. е. «перекладывать бумаги на столе»), менять один тип задания (электронную таблицу) на другой (систему подготовки текстов). При этом пользователю также доступны любые другие средства, в том числе вспомогательные (калькулятор, часы и т. д.).
Пользователь может переносить информацию из одного документа в другой путем включения нужных частей одного документа в соответствующие места другого документа. Это связывается с другой метафорой – «буфером вырезок». До появления систем автоматизированной обработки текстов был традиционный способ облегчения верстки: вклейка вырезанного фрагмента вместо перепечатывания страницы. WIMP-интерфейсы обеспечивают аналогичные возможности вырезки и вставки, но при этом буфер, в который помещается вырезанный фрагмент, дает возможность вставки стольких копий элементов данных, сколько требуется.
Гибкость интерфейса. Гибкость интерфейса — это его способность учитывать уровень подготовки и производительность труда пользователя. Свойство гибкости предполагает возможность изменения структуры диалога и/или входных данных. Концепция гибкого (адаптивного) интерфейса в настоящее время является одной из основных областей исследования взаимодействия человека и ЭВМ. Основная проблема состоит не в том, как организовать изменения в диалоге, а в том, какие признаки нужно использовать для определения необходимости внесения изменений и их сути.
Эстетическая привлекательность. Корректное визуальное представление используемых объектов обеспечивает передачу весьма важной дополнительной информации о поведении и взаимодействии различных объектов. В то же время следует помнить, что каждый визуальный элемент, который появляется на экране, потенциально требует внимания пользователя, которое, как известно, не безгранично.
Качество интерфейса сложно оценить количественными характеристиками, однако более или менее объективную его оценку можно получить на основе приведенных ниже частных показателей.
Время, необходимое определенному пользователю для достижения заданногоуровня знаний и навыков по работе с приложением.
Сохранение полученных рабочих навыков по истечении некоторого времени(например, после недельного перерыва пользователь должен выполнить определенную последовательность операций за заданное время).
Скорость решения задачи с помощью данного приложения; при этом должнооцениваться не быстродействие системы и не скорость ввода данных с клавиатуры, авремя, необходимое для достижения цели решаемой задачи. Исходя из этого, критерий оценки по данному показателю может быть сформулирован, например, так: пользователь должен обработать за час не менее 20 документов с ошибкой не более 1 %.
Субъективная удовлетворенность пользователя при работе с системой (которая количественно может быть выражена в процентах или оценкой по n-бальной шкале).
Количественный анализ интерфейса
Многие количественные и эвристические методы используются для анализа и изучения интерфейсов. Эти методы составляют значительную часть содержания большинства книг, посвященных этой теме, включая и те, которые указаны в библиографическом списке за такими авторами, как Шнейдерман (Shneiderman), Норман (Norman) и Мэйхью (Mayhew). Например, с помощью пассивного наблюдения за тестированием нового интерфейса с участием нескольких добровольцев опытный разработчик интерфейсов может узнать столько же ценной информации, сколько можно получить с помощью любого метода количественного анализа. Здесь я хочу сосредоточиться на количественных методах не для того, чтобы принизить значение качественных методов, но скорее для того, чтобы найти между ними баланс и показать ценность численных и эмпирических методов, которые не являются широко известными. Количественные методы часто могут свести спорные вопросы к простым вычислениям. Еще одним, более важным преимуществом этих методов является то, что они помогают нам понять важнейшие аспекты взаимодействия человека с машиной.
Одним из лучших подходов к количественному анализу моделей интерфейсов является классическая модель GOMS — «правила для целей, объектов, методов и выделения» (the model of goals, objects, methods, and selection rules), которая впервые привлекла к себе внимание в 80-х годах (Card, Moran and Newell, 1983). Моделирование GOMS позволяет предсказать, сколько времени потребуется опытному пользователю на выполнение конкретной операции при использовании данной модели интерфейса. После обсуждения модели GOMS мы рассмотрим количественные методы оценки производительности интерфейсов, скорости движения курсора и времени, необходимого для принятия решения.
Модель скорости печати goms
Довольно ценный аспект метода GOMS — модель, основанная на оценке скорости печати. Разработчики, которые знакомы с методом GOMS, редко проводят детальный и формальный анализ модели интерфейса. Отчасти это происходит из-за того, что основы GOMS и других количественных методов известны им настолько, что они изначально руководствуются этими методами в процессе разработки. К формальному анализу, конечно, прибегают в случаях, когда необходимо выбрать один из двух вариантов разработки, когда даже небольшие различия в скорости могут давать большой экономический и психологический эффект. Иногда разработчики пользуются поражающими своей точностью расширенными моделями GOMS, как, например, анализ с использованием метода критического пути GOMS (critical-path method GOMS, CPM-GOMS) или версия, называемая естественным языком GOMS (natural GOMS language, NGOMSL), в которой учитывается поведение неопытного пользователя, например время, необходимое ему для обучения. С помощью этих методов можно, например, предсказать, сколько времени понадобится пользователю для выполнения некоторого набора действий при использовании данного интерфейса с абсолютной погрешностью менее 5%. В расширенных моделях почти все оценки не выходят за пределы стандартного отклонения, принятого для измеренных значений времени (Gray, John и Atwood, 1993, с. 278). Для вопросов, которые вызывают жаркие споры и по поводу которых авторитетные разработчики зачастую высказывают совершенно разные мнения, полезно вооружиться количественными методами, имеющими теоретическое обоснование и получившими экспериментальную апробацию. Более полный обзор и библиографию, посвященные различным моделям GOMS, можно найти у Джона (John, 1995); там же можно найти и модель CPM-GOMS, разработанную самим Джоном.
Измерение эффективности интерфейса
Если имеется модель интерфейса, то с помощью GOMS и его расширений можно определить время, необходимое пользователю на выполнение любой, четко сформулированной задачи, для которой данный интерфейс предусмотрен. Однако модели анализа не могут дать ответ на вопрос о том, насколько быстро должен работать интерфейс. Чтобы ответить на него, мы можем воспользоваться мерой, применяемой в теории информации. Далее мы будем рассматривать термин информация в техническом смысле, т.е. как квантификацию некоторого объема данных, передаваемых с помощью средства коммуникации, как, например, при разговоре двух людей по телефону, или если человек подает некоторый сигнал машине, например с помощью нажатия кнопки ГУВ, когда курсор находится в определенной области экрана. Перед тем как углубиться в детали техники измерения того, какой объем информации нужен для выполнения поставленной задачи, обоснуем необходимость такого измерения.
Чтобы сделать правильную оценку времени, необходимого на выполнение задачи с помощью самого быстрого интерфейса, прежде всего следует определить минимальное количество информации, которое пользователь должен ввести, чтобы выполнить задачу. Это минимальное количество не зависит от модели интерфейса. Если методы работы, используемые в предполагаемом интерфейсе, требуют введения такого количества информации, которое превышает минимальное, это означает, что пользователь делает лишнюю работу, и поэтому интерфейс можно усовершенствовать. С другой стороны, если от пользователя требуется ввести именно то количество информации, которое необходимо для выполнения задачи, то для этой задачи интерфейс нельзя сделать более производительным путем изменения количества информации. В этом случае пути улучшения интерфейса (а также много путей для ухудшения) все же остаются, но по крайней мере данная цель повышения производительности будет уже достигнута.
Информационно-теоретическая производительность определяется так же, как понятие производительности определяется в термодинамике — отношением мощности на выходе к мощности на входе процесса. Если в течение какого-то периода времени электрогенератор, работающий от двигателя производительностью в 1000 ватт, производит 820 ватт, то он имеет производительность 820/100=0.82. Производительность также часто обозначается через проценты. В этом случае производительность электрогенератора будет составлять 82%. Идеальный генератор (который не может существовать с точки зрения второго закона термодинамики) должен иметь производительность 100%.
Информационная производительность интерфейса E определяется как отношение минимального количества информации, необходимого для выполнения задачи, к количеству информации, которое должен ввести пользователь. Так же как и в отношении физической производительности, параметр E может изменяться в пределах от 0 до 1. Если никакой работы для выполнения задачи не требуется или работа просто не производится, то производительность составляет 1. (Это формальное положение вводится для того, чтобы избежать деления на 0, как в случае ответа на выводимое прозрачное сообщение об ошибке (см. раздел 5.5).)
Производительность E может равняться и 0 в случаях, когда пользователь должен ввести информацию, которая совершенно бесполезна (рис. 4). Следует отметить, что в интерфейсах можно встретить немало деталей, которые имеют сомнительную ценность из-за параметра E=0. Примером такого бесполезного элемента может быть диалоговое окно, в котором есть только одна-единственная возможность для действия пользователя, например кнопка OK. (В JavaScript есть даже специальная команда Alert, предназначенная только для того, чтобы делать такие ненужные диалоговые окна. Разработчики языка JavaScript были достаточно разумны, чтобы убрать из него команду goto и сделать программирование на этом языке структурным, но они упустили из виду аспект интерфейса.)
Рис. 4. Диалоговое окно с информационной теоретической эффективностью 0
В параметре E учитывается только информация, необходимая для задачи, и информация, вводимая пользователем. Два или более методов действия могут иметь одинаковую производительностьE, но иметь разное время выполнения. Возможно даже, что один метод имеет более высокий показатель E, но действует медленнее, чем другой метод, — например M K M K и M K K K. В этом примере при использовании первого метода должно быть введено только два символа. При использовании второго метода требуется ввести три символа, но времени на все действие тратится меньше. Трудно привести другие примеры из обычной жизни, в которых происходит аналогичная перестановка скорости и информационной производительности. Как правило, чем более производительным является интерфейс, тем более продуктивным и более человекоориентированным он является.
Информация измеряется в битах. Один бит, который представляет собой один из двух альтернативных вариантов (таких как 0 или 1, да или нет), является единицей информации. Например, чтобы выбрать один из каких-либо четырех объектов, потребуется 2 бита информации. Если объекты обозначить как A, B, C и D, первый бит информации определит выбор между A и B или C и D. Когда первый выбор сделан (например, C и D), второй бит определит выбор между следующими двумя элементами (либо C, либо D). Двух двоичных выборов, или двух битов, достаточно для выбора одного элемента из четырех. Чтобы сделать выбор из группы восьми элементов, потребуется 3 бита. Из шестнадцати элементов — 4 бита, и т.д. В общем случае при количестве nравновероятных вариантов суммарное количество передаваемой информации определяется как степень 2, равная n:
Количество информации для каждого варианта определяется как
Если вероятности для каждой альтернативы не являются равными и i-я альтернатива имеет вероятность p(i), то информация, передаваемая этой альтернативой, определяется как
Количество информации является суммой (по всем вариантам) выражения (2), которое при равновероятных вариантах сводится к выражению (1). Отсюда следует, что информационное содержание интерфейса, в котором возможно сделать только нажатие единственной клавиши (а ненажатие клавиши не допускается), составляет 0 бит:
Однако может показаться, что нажатие единственной клавиши способно, например, вызвать подрыв динамита для разрушения здания. Таким образом, передает ли это нажатие какую-нибудь информацию? На самом деле нет, потому что ненажатие кнопки не было предусмотрено как альтернатива — интерфейс допускает «только нажатие единственной клавиши». Если же нажатие клавиши не производится в течение 5-минутного периода, когда подрыв возможен, то здание не будет разрушено, и поэтому нажатие или ненажатие передает до 1 бита информации, так как в этом случае имеется альтернатива из двух вариантов. Из выражения (2) следует, что в вычислениях используется вероятность (p) того, что здание будет разрушено. Таким образом, вероятность того, что оно не будет разрушено, составляет 1-p. С помощью выражения (2) мы можем вычислить информационное содержание данного интерфейса:
При p=S результат выражения (4) составит:
Значение выражения (4) будет меньше 1, если p ≠ S. В частности при p = 0 или p = 1 оно составит 0, как это видно из выражения (3).
Этот пример показывает важный момент, который заключается в том, что мы можем оценить объем информации, содержащейся в сообщении, только в контексте всего набора возможных сообщений. Чтобы подсчитать количество информации, передаваемой некоторым полученным сообщением, необходимо знать в частности вероятность, с которой это сообщение может быть отправлено. Количество информации в любом сообщении не зависит от других сообщений, которые были в прошлом или могут быть в будущем, не связано со временем или продолжительностью и не зависит от каких-либо иных событий, так же как результат подбрасывания симметричной монеты не зависит от результата предыдущих подбрасываний или от времени дня, когда это подбрасывание производится. Зачет по текущей лабораторной работе получает студент, который прочитал это предложение и первым сообщил об этом преподавателю.
Кроме того, важно учитывать, что:
Однако действия, которые совершает пользователь при выполнении задачи, можно с большей точностью смоделировать в виде процесса Маркова, в котором вероятность последующих действий зависит от уже совершенных пользователем действий. Тем не менее, для данного рассмотрения достаточно использовать упомянутые вероятности отдельных, единичных событий, при этом будем исходить из того, что все сообщения являются независимыми друг от друга и равновероятными.
Также можно вычислить количество информации, которое передается с помощью устройств, отличающихся от клавиатуры. Если экран дисплея разделен на две области — со словом «Да» в одной области и словом «Нет» — в другой, то один клик, совершенный в одной из областей, будет передавать 1 бит информации. Если имеется n равновероятных объектов, то нажатием на один из них сообщается log2 n бит информации. Если объекты имеют разные размеры, то количество информации, сообщаемой каждым из них, не изменяется, но увеличивается время перемещения ГУВ к более мелким объектам (далее мы покажем способ вычисления этого времени). Если объекты имеют разные вероятности, формула остается аналогичной той, которая была дана для случая ввода с клавиатуры разновероятных данных. Различие состоит только в том, что для нажатия клавиши может потребоваться 0.2 с. тогда как для нажатия кнопки, изображенной на экране, в среднем может потребоваться около 1.3 с (без учета времени перемещения руки пользователя с клавиатуры на ГУВ).
В случае голосового ввода информации его информационное содержание можно вычислить, если рассматривать речь как последовательность вводимых символов, а не как непрерывный поток определенного диапазона и продолжительности.
Данный подход к теории информации и ее связи с разработкой интерфейсов является упрощенным. Но даже в такой упрощенной форме, которую мы также использовали при рассмотрении модели GOMS, теория информации может дать нам общий критерий оценки качества интерфейса.