Докажите что касательные к окружности проведенные через концы диаметра параллельны
Окружность. Касательная к окружности.
Прямая (MN), имеющая с окружностью только одну общую точку (A), называется касательной к окружности.
Общая точка называется в этом случае точкой касания.
Возможность существования касательной, и притом проведенной через любую точку окружности, как точку касания, доказывается следующей теоремой.
Теорема.
Если прямая перпендикулярна к радиусу в его конце, лежащем на окружности, то эта прямая — касательная.
Допустим противное: пусть MN имеет с окружностью еще другую общую точку, например B. Тогда прямая OB была бы радиусом и, следовательно, равнялась бы OA.
Обратная теорема.
Если прямая касательная к окружности, то радиус, проведенный в точку касания, перпендикулярен к ней.
Следствие.
Через всякую данную на окружности точку можно провести касательную к этой окружности и притом только одну, так как через эту точку можно провести перпендикуляр, и притом только один, к радиусу, проведенному в нее.
Теорема.
Касательная параллельная хорде, делит в точке касания дугу, стягиваемую хордой, пополам.
Пусть прямая AB касается окружности в точке M и параллельна хорде СD. Требуется доказать, что ∪CM= ∪MD.
Проведя через точку касания диаметр ME, получаем: EM ⊥ AB и следовательно, EM ⊥ СD. Поэтому СM=MD.
Через данную точку провести касательную к данной окружности.
Если данная точка находится на окружности, то проводят через нее радиус и через конец радиуса перпендикулярную прямую. Эта прямая будет искомой касательной.
Рассмотрим тот случай, когда точка дана вне круга.
Пусть требуется провести к окружности с центром O касательную через точку A. Для этого из точки A, как из центра, описываем дугу радиусом AO, а из точки O, как центра, пересекаем эту дугу в точках B и С раствором циркуля, равным диаметру данного круга.
Следствие.
Две касательные, проведенные из одной точки к окружности, равны и образуют равные углы с прямой, соединяющей эту точку с центром.
Так AD=AE и ∠OAD = ∠OAE потому, что прямоугольные треугольники AOD и AOE, имеющие общую гипотенузу AO и равные катеты OD и OE (как радиусы), равны. Заметим, что здесь под словом “касательная” подразумевается собственно “отрезок касательной” от данной точки до точки касания.
Отрезки и прямые, связанные с окружностью. Теорема о бабочке
Отрезки и прямые, связанные с окружностью
Фигура | Рисунок | Определение и свойства | ||||||||||||||||||||
Окружность | ||||||||||||||||||||||
Круг | ||||||||||||||||||||||
Конечная часть плоскости, ограниченная окружностью | ||||||||||||||||||||||
Радиус | ||||||||||||||||||||||
Отрезок, соединяющий центр окружности с любой точкой окружности | ||||||||||||||||||||||
Хорда | ||||||||||||||||||||||
Отрезок, соединяющий две любые точки окружности | ||||||||||||||||||||||
Диаметр | ||||||||||||||||||||||
Хорда, проходящая через центр окружности. Диаметр является самой длинной хордой окружности | ||||||||||||||||||||||
Касательная | ||||||||||||||||||||||
Прямая, имеющая с окружностью только одну общую точку. Касательная перпендикулярна к радиусу окружности, проведённому в точку касания | ||||||||||||||||||||||
Секущая | ||||||||||||||||||||||
Прямая, пересекающая окружность в двух точках Свойства хорд и дуг окружности
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. | ||||||||||||||||||||||
Диаметр, проходящий через середину хорды | ||||||||||||||||||||||
Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | ||||||||||||||||||||||
Равные хорды | ||||||||||||||||||||||
Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. | ||||||||||||||||||||||
Хорды, равноудалённые от центра окружности | ||||||||||||||||||||||
Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | ||||||||||||||||||||||
Две хорды разной длины | ||||||||||||||||||||||
Большая из двух хорд расположена ближе к центру окружности. | ||||||||||||||||||||||
Равные дуги | ||||||||||||||||||||||
У равных дуг равны и хорды. | ||||||||||||||||||||||
Параллельные хорды | ||||||||||||||||||||||
Дуги, заключённые между параллельными хордами, равны. Теоремы о длинах хорд, касательных и секущих
|