Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

0 ΠΈ 1 ΡΠ²Π»ΡΡŽΡ‚ΡΡ корнями Ρ‡Ρ‘Ρ‚Π½ΠΎΠΉ стСпСни β‡’ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅, Ρ‡Π΅Ρ€Π΅Π· эти Ρ‚ΠΎΡ‡ΠΊΠΈ, производная Π½Π΅ мСняСт Π·Π½Π°ΠΊ β‡’ Ρ„-ция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума.

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ ΠΠ•ΠžΠ’Π Π˜Π¦ΠΠ’Π•Π›Π¬ΠΠ«Π• значСния β‡’

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

Π’Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄ΡŒ:

ПояснСння:

Π’Π°ΠΊ як 5 ΠΊΠ³ Ρ†ΡƒΠΊΠ΅Ρ€ΠΎΠΊ Ρ– 5 ΠΊΠ³ ΠΏΠ΅Ρ‡ΠΈΠ²Π° ΠΊΠΎΡˆΡ‚ΡƒΡ” 60 Π³Ρ€Π½, Ρ‚ΠΎ ΠΌΠ°Ρ”ΠΌΠΎ рівняння 5Ρ…+5Ρƒ=60.

Π’Π°ΠΊ, як 3 ΠΊΠ³ Ρ†ΡƒΠΊΠ΅Ρ€ΠΎΠΊ, Π΄ΠΎΡ€ΠΎΠΆΡ‡Ρ– Π·Π° 2 ΠΊΠ³ ΠΏΠ΅Ρ‡ΠΈΠ²Π° Π½Π° 14 Π³Ρ€Π½, Ρ‚ΠΎ ΠΌΠ°Ρ”ΠΌΠΎ рівняння 3Ρ…-2Ρƒ=14

Π”ΠΎΠΌΠ½ΠΎΠΆΠΈΠΌΠΎ ΠΎΠ±ΠΈΠ΄Π²Ρ– частини ΠΏΠ΅Ρ€ΡˆΠΎΠ³ΠΎ рівняння Π½Π° 1/5, ΠΌΠ°Ρ”ΠΌΠΎ

Виписуємо Π΄Ρ€ΡƒΠ³Π΅ рівняння

ΠžΡ‚ΠΆΠ΅ 1 ΠΊΠ³ Ρ†ΡƒΠΊΠ΅Ρ€ΠΎΠΊ ΠΊΠΎΡˆΡ‚ΡƒΡ” 7 Π³Ρ€Π½ 60 ΠΊΠΎΠΏ

1 ΠΊΠ³ ΠΏΠ΅Ρ‡ΠΈΠ²Π° 4 Π³Ρ€Π½ 40 ΠΊΠΎΠΏ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

Если ΠΏΡ€ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ остатка, Π·Π½Π°Ρ‡ΠΈΡ‚ дСлится Π½Π°Ρ†Π΅Π»ΠΎ. 234/45 = 5.2(это Π½Π΅ Ρ†Π΅Π»ΠΎΠ΅ число). И Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅.

900/45 = 20(это дСлится Π±Π΅Π· остатка)

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

ΠžΡ‚Π²Π΅Ρ‚:

ОбъяснСниС:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΊΠΎ всСм частям нСравСнства ΠΏΡ€ΠΈΠ±Π°Π²ΠΈΠΌ 1

2. 4 : 1/2 = 8, 4 : 8 = 1/2, Ρ‚ΠΎΠ³Π΄Π° 1/2 ≀ 4/y ≀ 8,

слоТим это нСравСнство ΠΈ 1/2 ≀ y ≀ 8.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠœΠ°ΠΊΡΠΈΠΌΡƒΠΌΡ‹, ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹ ΠΈ экстрСмумы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠœΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚ΠΎΡ‡ΠΊΡƒ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ мСньшС, Ρ‡Π΅ΠΌ Π² сосСдних Ρ‚ΠΎΡ‡ΠΊΠ°Ρ….

ΠœΠ°ΠΊΡΠΈΠΌΡƒΠΌΠΎΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚ΠΎΡ‡ΠΊΡƒ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ большС, Ρ‡Π΅ΠΌ Π² сосСдних Ρ‚ΠΎΡ‡ΠΊΠ°Ρ….

Π’Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π² этих Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… мСняСтся Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ двиТСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: Ссли функция пСрСстаСт ΠΏΠ°Π΄Π°Ρ‚ΡŒ ΠΈ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ расти – это Ρ‚ΠΎΡ‡ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°, Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚ – максимума.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

ΠœΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹ ΠΈ максимумы вмСстС ΠΈΠΌΠ΅Π½ΡƒΡŽΡ‚ экстрСмумами Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π˜Π½Ρ‹ΠΌΠΈ словами, всС ΠΏΡΡ‚ΡŒ Ρ‚ΠΎΡ‡Π΅ΠΊ, Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Π²Ρ‹ΡˆΠ΅, ΡΠ²Π»ΡΡŽΡ‚ΡΡ экстрСмумами.

Π’ Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… экстрСмумов (Ρ‚.Π΅. максимумов ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ²) производная Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

Благодаря этому Π½Π°ΠΉΡ‚ΠΈ эти Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π΅ составляСт ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, Π΄Π°ΠΆΠ΅ Ссли Ρƒ вас Π½Π΅Ρ‚ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π’Π½ΠΈΠΌΠ°Π½ΠΈΠ΅! Когда ΠΏΠΈΡˆΡƒΡ‚ экстрСмумы ΠΈΠ»ΠΈ максимумы/ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹ ΠΈΠΌΠ΅ΡŽΡ‚ Π² Π²ΠΈΠ΄Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚.Π΅. \(y\). Когда ΠΏΠΈΡˆΡƒΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ экстрСмумов ΠΈΠ»ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ максимумов/ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ² ΠΈΠΌΠ΅ΡŽΡ‚ Π² Π²ΠΈΠ΄Ρƒ иксы Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΄ΠΎΡΡ‚ΠΈΠ³Π°ΡŽΡ‚ΡΡ максимумы/ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹. НапримСр, Π½Π° рисункС Π²Ρ‹ΡˆΠ΅, \(-5\) Ρ‚ΠΎΡ‡ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° (ΠΈΠ»ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ° экстрСмума), Π° \(1\) – ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ (ΠΈΠ»ΠΈ экстрСмум).

Как Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ экстрСмумов Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (7 Π·Π°Π΄Π°Π½ΠΈΠ΅ Π•Π“Π­)?

Π”Π°Π²Π°ΠΉΡ‚Π΅ вмСстС Π½Π°ΠΉΠ΄Π΅ΠΌ количСство Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

Π’Π½ΠΈΠΌΠ°Π½ΠΈΠ΅! Если Π΄Π°Π½ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ экстрСмумов Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΌΡ‹ Π½Π΅ считаСм максимумы ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ! ΠœΡ‹ считаСм Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… производная Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ обращаСтся Π² ноль (Ρ‚.Π΅. пСрСсСкаСт ось \(x\)).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмумаДокаТитС Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

Как Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ максимумов ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (7 Π·Π°Π΄Π°Π½ΠΈΠ΅ Π•Π“Π­)?

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚Π²Π΅Ρ‚ΠΈΡ‚ΡŒ Π½Π° этот вопрос, Π½ΡƒΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Π΅Ρ‰Π΅ Π΄Π²Π° Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΏΡ€Π°Π²ΠΈΠ»:

— ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π° Ρ‚Π°ΠΌ, Π³Π΄Π΅ функция возрастаСт.
— ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° Ρ‚Π°ΠΌ, Π³Π΄Π΅ функция ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚.

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ этих ΠΏΡ€Π°Π²ΠΈΠ» Π΄Π°Π²Π°ΠΉΡ‚Π΅ Π½Π°ΠΉΠ΄Π΅ΠΌ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° ΠΈ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹ ΠΈ максимумы Π½Π°Π΄ΠΎ ΠΈΡΠΊΠ°Ρ‚ΡŒ срСди Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмумов, Ρ‚.Π΅. срСди \(-13\), \(-11\), \(-9\),\(-7\) ΠΈ \(3\).

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΡ‰Π΅ Π±Ρ‹Π»ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ расставим Π½Π° рисункС сначала Π·Π½Π°ΠΊΠΈ плюс ΠΈ минус, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‰ΠΈΠ΅ Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠŸΠΎΡ‚ΠΎΠΌ стрСлки – ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‰ΠΈΠ΅ возрастаниС, убывания Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

\(-11\): производная сначала ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°, Π·Π½Π°Ρ‡ΠΈΡ‚ функция возрастаСт, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚. ΠžΠΏΡΡ‚ΡŒ ΠΏΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅ это мыслСнно Π½Π°Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ ΠΈ Π²Π°ΠΌ станСт ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ \(-11\) – это ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ.

\(- 9\): функция возрастаСт, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚ – максимум.

ВсС Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΠΎΠ±Ρ‰ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π²Ρ‹Π²ΠΎΠ΄Π°ΠΌΠΈ:

— Ѐункция ΠΈΠΌΠ΅Π΅Ρ‚ максимум Ρ‚Π°ΠΌ, Π³Π΄Π΅ производная Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ ΠΈ мСняСт Π·Π½Π°ΠΊ с плюса Π½Π° минус.
— Ѐункция ΠΈΠΌΠ΅Π΅Ρ‚ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ Ρ‚Π°ΠΌ, Π³Π΄Π΅ производная Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ ΠΈ мСняСт Π·Π½Π°ΠΊ с минуса Π½Π° плюс.

Как Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ максимумов ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ² Ссли извСстна Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (12 Π·Π°Π΄Π°Π½ΠΈΠ΅ Π•Π“Π­)?

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚Π²Π΅Ρ‚ΠΈΡ‚ΡŒ Π½Π° этот вопрос, Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ всС Ρ‚ΠΎ ΠΆΠ΅, Ρ‡Ρ‚ΠΎ ΠΈ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌ ΠΏΡƒΠ½ΠΊΡ‚Π΅: Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π³Π΄Π΅ производная ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°, Π³Π΄Π΅ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° ΠΈ Π³Π΄Π΅ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π§Ρ‚ΠΎΠ±Ρ‹ Π±Ρ‹Π»ΠΎ понятнСС Π½Π°ΠΏΠΈΡˆΡƒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ с ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

Всё! Π’ΠΎΡ‡ΠΊΠΈ максимумов ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ² Π½Π°ΠΉΠ΄Π΅Π½Ρ‹.

Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ°Ρ Π½Π° оси Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… производная Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ – ΠΌΠ°ΡΡˆΡ‚Π°Π± ΠΌΠΎΠΆΠ½ΠΎ Π½Π΅ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ. ПовСдСниС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, ΠΊΠ°ΠΊ это сдСлано Π½Π° рисункС Π½ΠΈΠΆΠ΅. Π’Π°ΠΊ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Π΅Π΅ Π³Π΄Π΅ максимум, Π° Π³Π΄Π΅ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

ΠŸΡ€ΠΈΠΌΠ΅Ρ€(Π•Π“Π­). НайдитС Ρ‚ΠΎΡ‡ΠΊΡƒ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \(y=3x^5-20x^3-54\).
РСшСниС:
1. НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: \(y’=15x^4-60x^2\).
2. ΠŸΡ€ΠΈΡ€Π°Π²Π½ΡΠ΅ΠΌ Π΅Ρ‘ ΠΊ Π½ΡƒΠ»ΡŽ ΠΈ Ρ€Π΅ΡˆΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

3. – 6. НанСсСм Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Ρ‡ΠΈΡΠ»ΠΎΠ²ΡƒΡŽ ось ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ, ΠΊΠ°ΠΊ мСняСтся Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΊΠ°ΠΊ двиТСтся функция:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ максимума являСтся \(-2\).

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ экстрСмума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НаибольшСС ΠΈΠ»ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ называСтся Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½Ρ‹ΠΌ экстрСмумом.

Π“Π»ΠΎΠ±Π°Π»ΡŒΠ½Ρ‹ΠΉ экстрСмум ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Ρ‚ΡŒΡΡ Π»ΠΈΠ±ΠΎ Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… локального экстрСмума, Π»ΠΈΠ±ΠΎ Π½Π° ΠΊΠΎΠ½Ρ†Π°Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°.

НСобходимоС условиС экстрСмума

(НСобходимоС условиС экстрСмума)

НС Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ своСй критичСской Ρ‚ΠΎΡ‡ΠΊΠ΅ функция ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ максимум ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ.

ΠŸΠ΅Ρ€Π²ΠΎΠ΅ достаточноС условиС экстрСмума

(ΠŸΠ΅Ρ€Π²ΠΎΠ΅ достаточноС условиС экстрСмума)

РСшСниС. Находим ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ данная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума

Π’Ρ‚ΠΎΡ€ΠΎΠ΅ достаточноС условиС экстрСмума

(Π’Ρ‚ΠΎΡ€ΠΎΠ΅ достаточноС условиС экстрСмума)

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ экстрСмума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ ΠΏΠΎ Π·ΡƒΠ±Π°ΠΌ? Π’Π΅Π±Π΅ ΠΎΡ‚Π²Π΅Ρ‚ΠΈΡ‚ экспСрт Ρ‡Π΅Ρ€Π΅Π· 10 ΠΌΠΈΠ½ΡƒΡ‚!

РСшСниС. Находим ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Находим Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… пСрвая производная Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ:

Вторая производная Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

ΠžΡΡ‚Π°Π»ΠΈΡΡŒ вопросы?

Π—Π΄Π΅ΡΡŒ Π²Ρ‹ Π½Π°ΠΉΠ΄Π΅Ρ‚Π΅ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹.

ЭкстрСмум прСдставляСт собой Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ достиТСния ΠΈΠΌ минимального ΠΈΠ»ΠΈ максимального показания. Под понятиСм «экстрСмумы» ΠΈΠ»ΠΈ ΠΏΠΎ-Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹/максимумы подразумСваСтся Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρƒ).

Если Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ достигаСтся экстрСмум ΠΈΠ»ΠΈ, ΠΈΠ½Ρ‹ΠΌΠΈ словами, максимальноС/минимальноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅, Ρ‚ΠΎ эта Ρ‚ΠΎΡ‡ΠΊΠ° носит Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ экстрСмума. Из этого слСдуСт, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ достиТСнии ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°, Ρ‚ΠΎΡ‡ΠΊΠ° экстрСмума Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Π·Π²Π°Π½Π° Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°, ΠΈ, Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, ΠΏΡ€ΠΈ достиТСнии максимума эта Ρ‚ΠΎΡ‡ΠΊΠ° Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒΡΡ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ максимума. Π’ случаС, ΠΊΠΎΠ³Π΄Π° ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ‚ΠΎΡ‡ΠΊΠΈ экстрСмумов (ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ²/максимумов) ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°ΡŽΡ‚ΡΡ иксы, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΄ΠΎΡΡ‚ΠΈΠ³Π°ΡŽΡ‚ΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ значСния.

Под понятиСм Β«ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ» имССтся Π² Π²ΠΈΠ΄Ρƒ Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠ° Π½Π° Π½Π΅ΠΉ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ функция ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, ΡΠ²Π»ΡΡŽΡ‰Π΅Π΅ΡΡ наимСньшим срСди всСх Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Π΅ΠΌΡ‹Ρ… Сю Π² любой ΠΈΠ· Π΄Ρ€ΡƒΠ³ΠΈΡ… сосСдних Ρ‚ΠΎΡ‡Π΅ΠΊ. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π² случаС, ΠΊΠΎΠ³Π΄Π° функция, достигнув ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΏΡ€Π΅ΠΊΡ€Π°Ρ‰Π°Π΅Ρ‚ ΠΏΠ°Π΄Π°Ρ‚ΡŒ, Π°, Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Π΅Π΅ рост, Ρ‚ΠΎ данная Ρ‚ΠΎΡ‡ΠΊΠ° ΠΈ прСдставляСт собой Ρ‚ΠΎΡ‡ΠΊΡƒ Π΅Π΅ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°.

Для ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° поставлСнный вопрос Π½ΡƒΠΆΠ½ΠΎ ΠΎΡ‚Ρ‹ΡΠΊΠ°Ρ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ пСрСстаСт ΠΏΠ°Π΄Π°Ρ‚ΡŒ. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠ², Ρ‡Ρ‚ΠΎ минимальноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π½ΠΎ 0, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡΠ°Ρ‚ΡŒ равСнство Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅:

Π‘ΠΎΠΊΡ€Π°Ρ‚ΠΈΠΌ Π΄Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π° 4:

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠ΅Π΅ΡΡ равСнство Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ записано Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅ послС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Ρ‹ мСстами слагаСмых:

РаспишСм слагаСмыС Π² ΠΈΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ ΠΎΡ‚ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ стСпСни:

Π­Ρ‚ΠΎ ΠΆΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ Ρ‚Π°ΠΊ:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ для упрощСния ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² Ρ‚Π°ΠΊΠΎΠΌ Π²ΠΈΠ΄Π΅:

Π’ этом случаС Ρ… = 1

Π—Π½Π°ΠΊΠ°ΠΌΠΈ Β«+Β» ΠΈ Β«-Β» ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Ρ‹ значСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.

ПослС ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… вычислСний Π±Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ Ρ… = 1, Ρ‡Ρ‚ΠΎ являСтся Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π’ΠΎΡ‡ΠΊΠΎΠΉ максимума называСтся Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ…, достигнув ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ, производная Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ ΠΌΠ΅Π½ΡΡ‚ΡŒ свой Π·Π½Π°ΠΊ с плюса Π½Π° минус. Зная это, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ поиску Ρ‚ΠΎΡ‡ΠΊΠΈ максимума для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ Π² Π·Π°Π΄Π°Π½ΠΈΠΈ.

Для этого Π½ΡƒΠΆΠ½ΠΎ Π½Π°Ρ‡Π°Ρ‚ΡŒ с поиска ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Π² Π·Π°Π΄Π°Π½ΠΈΠΈ значСния ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ слСдуСт ΠΏΡ€ΠΈΡ€Π°Π²Π½ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΊ 0 ΠΈ Π½Π°Ρ‡Π°Ρ‚ΡŒ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠ΅Π΅ΡΡ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

Упростим ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Избавимся ΠΎΡ‚ минусов Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ:

ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ:

МоТно ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρ… = 1,5.

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

А Π·Π°Ρ‚Π΅ΠΌ приравняСм Π΅Π΅ ΠΊ 0:

Π­Ρ‚ΠΎ позволяСт ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ:

ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ, Ссли x 3/2, Ρ‚ΠΎ производная y’ > 0, ΠΈ Π² этом случаС функция возрастаСт.

x =3/2=1,5 – это СдинствСнная Ρ‚ΠΎΡ‡ΠΊΠ° экстрСмума, которая являСтся Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°.

ΠšΡ€ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ прСдставляСт собой Ρ‚Ρƒ Ρ‚ΠΎΡ‡ΠΊΡƒ, ΠΏΡ€ΠΈ пСрСсСчСнии с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ производная Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ становится Ρ€Π°Π²Π½ΠΎΠΉ 0, Π»ΠΈΠ±ΠΎ ΠΎΠ½Π° вовсС Π½Π΅ сущСствуСт.

Для Π½Π°Ρ‡Π°Π»Π° Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄ критичСской Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ подразумСваСтся Ρ‚Π° Ρ‚ΠΎΡ‡ΠΊΠ°, ΠΏΡ€ΠΈ пСрСсСчСнии с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ производная ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Π΅Ρ‚ Π½ΡƒΠ»Π΅Π²ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π»ΠΈΠ±ΠΎ ΠΆΠ΅ эта производная просто Π½Π΅ сущСствуСт Π² этой Ρ‚ΠΎΡ‡ΠΊΠ΅, Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΠΌ, ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΠΎ Π»ΠΈ это ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊ упомянутой Π² Π·Π°Π΄Π°Π½ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

ΠŸΡ€ΠΈΡ€Π°Π²Π½ΡΠ΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊ 0:

f ‘(x) = 0, это Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ 2sin2x-3 = 0.

sin2x= 3 2 Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

ΠžΡ‚Π²Π΅Ρ‚: заданная функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ критичСских Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ сущСствуСт ΠΏΡ€ΠΈ Π»ΡŽΠ±Ρ‹Ρ… Ρ….

Под критичСскими Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡŽΡ‚ΡΡ Ρ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΅Π΅ производная Ρ€Π°Π²Π½Π° 0 ΠΈΠ»ΠΈ вовсС Π½Π΅ сущСствуСт.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *