Для чего сумматоры имеют вход переноса с
Комбинационные микросхемы. Часть 2
Сумматоры
Сумматоры могут использоваться также для суммирования чисел в отрицательной логике (когда логической единице соответствует электрический нуль, и наоборот, логическому нулю соответствует электрическая единица ). Но в этом случае входной сигнал переноса С также становится инверсным, поэтому при использовании одной микросхемы сумматора на вход С надо подать электрическую единицу (высокий уровень напряжения). Инверсным становится и выходной сигнал переноса Р, низкий уровень напряжения на нем (электрический нуль) соответствует наличию переноса. То есть получается, что сумматор абсолютно одинаково работает как с положительной, так и с отрицательной логикой.
Входы | Выходы | ||||||||
---|---|---|---|---|---|---|---|---|---|
C=0 | C=1 | ||||||||
A1 | A0 | B1 | B0 | P | S1 | S0 | P | S1 | S0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Сумматор может вычислять не только сумму, но и разность входных кодов, то есть работать вычитателем. Для этого вычитаемое число надо просто поразрядно проинвертировать, а на вход переноса С подать единичный сигнал (рис. 6.2).
Например, пусть нам надо вычислить разность между числом 11 (1011) и числом 5 (0101). Инвертируем поразрядно число 5 и получаем 1010, то есть десятичное 10. Сумматор при суммировании 11 и 10 даст 21, то есть двоичное число 10101. Если сигнал С равен 1, то результат будет 10110. Отбрасываем старший разряд (выходной сигнал Р) и получаем разность 0110, то есть 6.
Еще пример. Пусть надо вычислить разность между числом 12 (1100) и числом 9 (1001). Инвертируем поразрядно 9, получаем 0110, то есть десятичное 6. Находим сумму 12 и 6, получаем 18, а с учетом С = 1 получаем 19, то есть двоичное 10011. В четырех младших разрядах имеем 0011, то есть десятичное 3.
Неопределенные состояния на выходах сумматора могут возникать при любом изменении любого из входных кодов (рис. 6.4). Выходной код суммы может принимать в течение короткого времени значения, никак не связанные с входными кодами, а на выходе переноса могут появляться короткие паразитные импульсы. Это связано прежде всего с неодновременным изменением разрядов входных кодов. Чтобы избежать влияния этих неопределенных состояний на дальнейшую схему, необходимо предусматривать синхронизацию или стробирование выходных сигналов. Но для этого надо располагать информацией о моментах изменения входных кодов, которая имеется далеко не всегда.
Сумматоры: определения, классификация, уравнения, структуры и применение
Основной элементарной операцией, выполняемой над кодами чисел в цифровых устройствах, является арифметическое сложение.
Сумматор — логический операционный узел, выполняющий арифметическое сложение кодов двух чисел. При арифметическом сложении выполняются и другие дополнительные операции: учёт знаков чисел, выравнивание порядков слагаемых и тому подобное. Указанные операции выполняются в арифметическо-логических устройствах (АЛУ) или процессорных элементах, ядром которых являются сумматоры.
Сумматоры классифицируют по различным признакам.
Параллельный сумматор в простейшем случае представляет собой n одноразрядных сумматоров, последовательно (от младших разрядов к старшим) соединённых цепями переноса. Однако такая схема сумматора характеризуется сравнительно невысоким быстродействием, так как формирование сигналов суммы и переноса в каждом i-ом разряде производится лишь после того, как поступит сигнал переноса с (i-1)-го разряда.Таким образом, быстродействие сумматора определяется временем распространения сигнала по цепи переноса. Уменьшение этого времени — основная задача при построении параллельных сумматоров.
Для уменьшения времени распространения сигнала переноса применяют: конструктивные решения, когда используют в цепи переноса наиболее быстродействующие элементы; тщательно выполняют монтаж без длинных проводников и паразитных ёмкостных составляющих нагрузки и (наиболее часто) структурные методы ускорения прохождения сигнала переноса.
Сумматоры, которые имеют постоянное время, отводимое для суммирования, независимое от значений слагаемых, называют синхронными.
Последние две структуры строятся либо на счётных триггерах (сейчас практически не используются), либо по структуре “комбинационный сумматор – регистр хранения” (сейчас наиболее употребляемая схема).
Простейшим двоичным суммирующим элементом является четвертьсумматор. Происхождение названия этого элемента следует из того, что он имеет в два раза меньше выходов и в два раза меньше строк в таблице истинности по сравнению с полным двоичным одноразрядным сумматором. Наиболее известны для данной схемы названия: элемент “сумма по модулю 2” и элемент “исключающее ИЛИ”. Схема (рис. 1) имеет два входа а и b для двух слагаемых и один выход S для суммы. Работу её отражает таблица истинности 1 (табл. 1), а соответствующее уравнение имеет вид
№ наб. | a | b | p | P | S |
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 |
2 | 0 | 1 | 0 | 0 | 1 |
3 | 0 | 1 | 1 | 1 | 0 |
4 | 1 | 0 | 0 | 0 | 1 |
5 | 1 | 0 | 1 | 1 | 0 |
6 | 1 | 1 | 0 | 1 | 0 |
7 | 1 | 1 | 1 | 1 | 1 |
Уравнения, описывающие работу полного двоичного сумматора, представленные в совершенной дизъюнктивной нормальной форме (СДНФ), имеют вид:
x0=A | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | ||
---|---|---|---|---|---|---|---|---|---|---|
x1=B | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | ||
x2=Pi-1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | Название действия (функции) | Номер функции |
Si | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | Бит суммы по модулю 2 | F3,150 |
Pi | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | Бит переноса | F3,232 |
СДНФ суммы по модулю 2:
СДНФ бита переноса:
Cхема, которая обеспечивает сложение двух однобитных чисел А и В называется полусумматором. Полусумматор имеет 4 сигнальных линии: два входа для сигналов, представляющих одноразрядные двоичные числа А и В, и два выхода: сумма А и В по модулю 2 (S) и сигнал переноса (P). При этом S наименее значимый бит, а P наиболее значимый бит.
Схема полного сумматора может быть использована в качестве «строительных блоков» для построения схем многоразрядных сумматоров, путём добавления одноразрядных полных сумматоров. Для каждой цифры, которую схема должна быть в состоянии обрабатывать, используется один полный сумматор.
Двоичный одноразрядный полный сумматор является полной тринарной (трёхоперандной) двоичной логической функцией с бинарным (двухразрядным) выходом. Все три операнда и оба выходных разряда однобитные.
Может быть построен как тринарная (трёхоперандная) двоичная логическая функция с бинарным выходом [5] с временем выполнения операции сложения 2dt, но, для уменьшения аппаратных затрат, обычно строится трёхступенчатым, состоящим из трёх узлов: двух полусумматоров, которые являются полными бинарными (двухоперандными) двоичными логическими функциями с унарным выходом и логического элемента «2ИЛИ».
Троичный сумматор
Так как возможно несколько видов физической реализации троичных систем: трёхуровневая однопроводная, двухуровневая двухразрядная двухпроводная, двухуровневая трёхразрядная одноединичная трёхпроводная, двухуровневая трёхразрядная однонулевая и др., то возможны и несколько видов троичных сумматоров.
Троичный одноразрядный полный сумматор в троичной несимметричной системе счисления является неполной тринарной (трёхоперандной) троичной логической функцией. Два операнда — два слагаемых — полные, третий операнд — троичный разряд переноса — неполный и имеет только два значения 0 и 1 из трёх.
В несимметричной троичной системе счисления
x0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | слагаемое |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x1 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | слагаемое |
x2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Перенос из n-1 разряда |
S | 2 | 1 | 0 | 1 | 0 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 0 | 2 | 1 | 2 | 1 | 0 | МЗР суммы, сумма по модулю 3 |
C | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | СЗР суммы, перенос в n+1 разряд |
В симметричной троичной системе счисления
x0 | 1 | 0 | 7 | 1 | 0 | 7 | 1 | 0 | 7 | 1 | 0 | 7 | 1 | 0 | 7 | 1 | 0 | 7 | 1 | 0 | 7 | 1 | 0 | 7 | 1 | 0 | 7 | слагаемое | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x1 | 1 | 1 | 1 | 0 | 0 | 0 | 7 | 7 | 7 | 1 | 1 | 1 | 0 | 0 | 0 | 7 | 7 | 7 | 1 | 1 | 1 | 0 | 0 | 0 | 7 | 7 | 7 | слагаемое | |
x2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | Перенос из n-1 разряда | Номер функции |
S | 0 | 7 | 1 | 7 | 1 | 0 | 1 | 0 | 7 | 7 | 1 | 0 | 1 | 0 | 7 | 0 | 7 | 1 | 1 | 0 | 7 | 0 | 7 | 1 | 7 | 1 | 0 | МЗР суммы | F3,-624603703776 |
C | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 7 | 7 | СЗР суммы (трит переноса в n+1 разряд) | F3,3483426737048 |
Троичный зеркально-симметричный одноразрядный полный сумматор описан в [10]
Принципиальная схема одноразрядного сумматора в несимметричной троичной системе счисления в трёхбитной одноединичной системе троичных логических элементов
Принципиальная схема троичного одноразрядного сумматора в двухбитной системе троичных логических элементов
Принципиальная схема троичного полного одноразрядного сумматора, работающего в троичной симметричной системе счисления Фибоначчи в трёхбитной одноединичной системе троичных логических элементов
Принципиальная схема троичного полного сумматора в троичной симметричной системе счисления Фибоначчи в двухбитной системе троичных логических элементов
См. также
Примечания
Литература
Ссылки
Полезное
Смотреть что такое «Сумматор» в других словарях:
Сумматор — в нейронных сетях блок, суммирующий сигналы, поступающие от нейронов через синапсы. В общем случае сумматор может преобразовывать сигналы и передавать их нейронам или сумматорам тоже через синапсы. См. также: Нейронные сети Финансовый словарь… … Финансовый словарь
сумматор — регистр, накопитель, тотализатор, суммирующее устройство; интегросумматор Словарь русских синонимов. сумматор сущ., кол во синонимов: 1 • интегросумматор (1) … Словарь синонимов
СУММАТОР — узел арифметического устройства ЭВМ, осуществляющий операцию суммирования чисел. Выполняется на логических элементах, интегральных схемах … Большой Энциклопедический словарь
СУММАТОР — (1) аналоговый устройство аналоговых вычислительных (см.) для преобразования информационных сигналов различных физ. процессов в суммы нескольких физ. величин. В зависимости от физ. природы входных и выходных величин суммирующие устройства делятся … Большая политехническая энциклопедия
сумматор — 3.1.28 сумматор: Элемент кабельной распределительной сети, обеспечивающий сложение энергии радиосигналов (оптических сигналов) на общей нагрузке. Источник … Словарь-справочник терминов нормативно-технической документации
СУММАТОР — а; м. Основной узел арифметического устройства цифровой вычислительной машины или отдельный прибор, выполняющий операцию сложения двух чисел. Стрелка сумматора. * * * СУММАТОР СУММАТОР, узел арифметического устройства ЭВМ, осуществляющий операцию … Энциклопедический словарь
сумматор — sudėtuvas statusas T sritis automatika atitikmenys: angl. adder; combining unit; summation instrument; summator; summer vok. Addiereinrichtung, f; Addierer, m; Addierwerk, n; Summator, m; Summierer, m; Summierungseinrichtung, f rus. сумматор, m;… … Automatikos terminų žodynas
Сумматор — (от позднелат. surnmo складываю, от лат. summa сумма, итог) основной узел арифметического устройства (См. Арифметическое устройство) ЦВМ, посредством которого осуществляется операция сложения чисел. При поразрядном сложении десятичных… … Большая советская энциклопедия
Сумматор — м. Один из элементов ЭВМ, выполняющий суммирование. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой
- у тебя было такое чувство как будто тебе что то не хватает
- коды для lego worlds на ps4