Для чего расщепляется фаза
Расщепленные провода, их преимущества и область применения.
Появление коронного разряда на проводах линий электропередачи сопровождается потерями энергии и радиопомехами. Необходимость ограничения до приемлемых значений уровня потерь энергии и радиопомех приводит к тому, что рациональная конструкция проводов и арматуры линий электропередачи в значительной мере определяется коронным разрядом, особенно при сверхвысоких номинальных напряжениях.
Из электростатики известно, что при некотором напряжении U напряжённость поля на поверхности провода радиусом г0 при расстоянии S между проводами может быть рассчитана по формуле
Теперь можно определить напряжение, при котором возникает корона на проводе, приняв в последнем выражении Е = Екр, учтя коэффициент m получим
Таким образом, основной мерой борьбы с короной является увеличение радиуса провода. При очень высоких номинальных напряжениях пришлось бы применять провода чрезмерно большого сечения, даже если передаваемая мощность невелика. Для уменьшения потерь на корону вместо одного провода в фазе можно применить пучок проводников, находящихся друг от друга на расстоянии нескольких десятков сантиметров. Такой пучок параллельно соединенных проводников называется расщепленным проводом.
Провода расщепленной фазы располагаются в вершинах правильного многоугольника с радиусом описанной окружности гр, который называется радиусом расщепления. В этом случае эквивалентный радиус расщепленного провода может вычисляться по формуле
14. Распределение напряжения между элементами гирлянды изоляторов и способы его выравнивания.( см. МУ к лаб. раб. № 5)
Расщепленная фаза в линиях электропередач сверхвысокого напряжения
К линиям сверхвысокого напряжения (СВН) следует относить линии, работающие под напряжением от 330 до 1150 кВ, такие линии, как правило, называют системообразующими. Совокупность межсистемных линий сверхвысокого напряжения представляет собой Единую Энергосистему страны, а также связь с энергосистемами сопредельных государств.
Необходимость применения высоких уровней напряжения обусловлена необходимостью снижения потерь, которые находятся в обратно пропорциональной зависимости от величины напряжения. Линии СВН рассчитаны на передачу значительных величин мощностей, поэтому выход из строя хотя бы одной системообразующей линии, приводит к тяжелым авариям в энергосистеме.
Из вышесказанного следует, что к надежности таких линий предъявляются самые высокие требования. Некоторые конструкционные решения позволяют повысить надежность и экономическую эффективность линий сверхвысоких напряжений.
Одной из отличительных особенностей линий СВН является применение расщепленной фазы. Каждая фаза представляет собой конструкцию, состоящую из нескольких проводов, расположенных в пространстве по вершинам правильных многоугольников.
На протяжении пролета фазного провода между опорами правильное расположение проводов в пространстве достигается установкой металлических распорок.
Количество проводов в фазе определяется расчетным путем, на основании сравнения нескольких вариантов. Исходя из опыта, установлено оптимальное количество проводов для линий СВН: 330 кВ – 2, 500 кВ – 3, 750 кВ – 4, 1150 кВ – 8.
Причины использования расщепленной фазы. Применение обусловлено здесь несколькими факторами: увеличением пропускной способности, снижением потерь на «корону», снижением напряженности и как следствие уменьшением генерации помех для высокочастотной связи.
При проектировании и строительстве межсистемных линий сверхвысоких напряжений их экономическую эффективность рассчитывают из условия передачи больших токовых нагрузок, так, например, для линий 500 кВ порядка 1000 – 1200 А, 750 кВ от 2000 до 2500 А, 1150 до 5000 А. Для перетоков такой величины сечение одинарного провода должно быть в пределах от 1000 мм2 до 4000 мм2.
Изготовление такого провода, требует специальной технологии. К тому же, транспортировка и монтаж провода такого сечения, представляется весьма не удобным и затратным. Ко всему выше сказанному можно добавить, что применение одного провода большого сечения крайне не эффективно из-за поверхностного эффекта.
Это означает, что плотность тока будет смещена к поверхности провода, а средняя часть сечения использоваться не будет. Применяя технологию расщепленной фазы, общее сечение набирают суммированием сечений отдельных проводов.
Второй причиной применения технологии расщепленной фазы является необходимость снижения напряженности, которая в свою очередь приводит к дополнительным потерям на «корону», и генерации радиопомех для высокочастотной связи.
Сверхвысокие уровни напряжений в системообразующих линиях электропередач приводят к образованию вокруг проводов электрического поля высокой напряженности, при которой возникает коронный разряд на проводах, находящийся в прямой пропорциональной зависимости от диаметра фазного провода.
Чем выше показатель уровня напряженности, при которой начинается коронный разряд, тем меньше потери на корону. Если одиночные провода небольшого сечения разместить в вершинах правильного многоугольника, то такую систему можно рассматривать как один эквивалентный провод.
При определении количества проводов в расщепленной фазе должны быть учтены и механические показатели фазного провода. По механической прочности, должны быть соблюдены нижние возможные границы диапазона суммарного сечения проводов фазы: для ВЛ 330 кВ – не менее 500 мм2, 500 кВ – 900 мм2, 750 кВ – 1200 мм2, 1150 кВ – 4000 мм2. Верхняя граница диапазона суммарного сечения фазы для 750 кВ – 2400 мм2, для ВЛ-1150 – 4000 мм2.
Однако, расчет количества проводов в фазе не сводится только к условиям коронного разряда и снижения радиопомех. При расчетах должны учитываться такие факторы, как: увеличение емкости линии, при увеличении сечения фазного провода, увеличение затрат на компенсацию реактивной мощности.
При увеличении емкости фазы возрастает и напряженность электрического поля под проводами ВЛ, а значит для снижения влияния этого поля на окружающую среду, необходимо увеличить габариты линии, за счет увеличения высоты опор, что также влияет на капиталовложения в строительство ЛЭП.
Следует учитывать, что с ростом уровней напряжения, появляется расхождение расчетов сечения по экономической плотности тока и по условиям короны. Применение расщепленной фазы является лишь одной из особенностей, отличающей линии СВН от линий с более низкими уровнями напряжений.
Схемы замещения ЛЭП
Линия электрической сети теоретически рассматривается состоящей из бесконечно большого количества равномерно распределенных вдоль нее активных и реактивных сопротивлений и проводимостей.
Точный учет влияния распределенных сопротивлений и проводимостей сложен и необходим при расчетах очень длинных линий, которые в этом курсе не рассматривается.
На практике ограничиваются упрощенными методами расчета, рассматривая линию с сосредоточенными активными и реактивными сопротивлениями и проводимостями.
Для проведения расчетов принимают упрощенные схемы замещения линии, а именно: П-образную схему замещения, состоящую из последовательно соединенных активного (rл) и реактивного (xл) сопротивлений. Активная (gл) и реактивная (емкостная) (bл) проводимости включены в начале и конце линии по 1/2.
П-образная схема замещения характерна для воздушных ЛЭП напряжением 110-220 кВ длиной до 300-400 км.
Активное сопротивление определяется по формуле:
Активное сопротивление проводов и кабелей при частоте 50 Гц обычно примерно равно омическому сопротивлению. Не учитывается явление поверхностного эффекта.
Удельное активное сопротивление rо для сталеалюминиевых и других проводов из цветных металлов определяется по таблицам в зависимости от поперечного сечения.
Для стальных проводов нельзя пренебрегать поверхностным эффектом. Для них rо зависит от сечения и протекающего тока и находится по таблицам.
При температуре провода, отличной от 20 о С сопротивление линии уточняется по соответствующим формулам.
Реактивное сопротивление определяется:
Удельные индуктивные сопротивления фаз ВЛ в общем случае различны. При расчетах симметричных режимов используют средние значения xо:
Например, при расположении фаз по углам равностороннего треугольника со стороной Д, среднегеометрическое расстояние равно Д.
При расположении проводов ЛЭП в горизонтальном положении:
При размещении параллельных цепей на двухцепных опорах потокосцепление каждого фазного провода определяется токами обеих цепей. Изменение Х0 из-за влияния второй цепи зависит от расстояния между цепями. Отличие Х0 одной цепи при учете и без учета влияния второй цепи не превышает 5-6% и не учитывается в практических расчетах.
В линиях электропередач при Uном≥330 кВ (иногда и при напряжении 110 и 220 кВ) провод каждой фазы расщепляется на несколько проводов. Это соответствует увеличению эквивалентного радиуса. В выражении для Х0:
вместо rпр используется
nф— число проводов в одной фазе.
Для линии с расщепленными проводами последнее слагаемое в формуле 1 уменьшается в nф раз, т.е. имеет вид 0,0157/nф.
Удельное активное сопротивление фазы линии с расщепленными проводами определяются так:
Для сталеалюминиевых проводов Х0 определяется по справочным таблицам, в зависимости от сечения, для стальных в зависимости от сечения и тока.
Активная проводимость (gл) линии соответствует двум видам потерь активной мощности:
1) от тока утечки через изоляторы;
2) потери на корону.
В связи с этим задаются наименьшие допустимые сечения по короне:
Коронирование проводов приводит:
-к усиленному окислению поверхности проводов,
-к появлению радиопомех.
При расчете установившихся режимов сетей до 220 кВ активная проводимость практически не учитывается.
В сетях с Uном≥330 кВ при определении потерь мощности при расчете оптимальных режимов, необходимо учитывать потери на корону.
Для большинства расчетов в сетях 110-220 кВ ЛЭП (линия электропередачи) представляется более простой схемой замещения:
Иногда в схеме замещения вместо емкостной проводимости вл/2 учитывается реактивная мощность, генерируемая емкостью линий (зарядная мощность).
Половина емкостной мощности линии, МВАр, равна:
где Uф и U – соответственно фазное и междуфазное (линейное) напряжения, кВ;
Из выражения для QC (*) следует, что мощность QC, генерируемая линий сильно зависит от напряжения. Чем выше напряжение, тем больше емкостная мощность.
Для воздушных линий напряжением 35 кВ и ниже емкостную мощность (QC) можно не учитывать, тогда схема замещения примет следующий вид:
Для линий с Uном≥330 кВ при длине больше 300-400 км учитывают равномерное распределение сопротивлений и проводимостей вдоль линии.
Кабельные линии электропередачи представляют такой же П-образной схемой замещения как и ВЛ.
Удельные активные и реактивные сопротивления r0, х0 определяют по справочным таблицам, так же как и для ВЛ.
видно, что X0 уменьшается, а в0 растет при сближении разных проводов.
Для кабельных линий расстояние между проводами фаз значительно меньше, чем для ВЛ и Х0 очень мало.
При расчетах режимов КЛ (кабельных линий) напряжением 10кВ и ниже можно учитывать только активное сопротивление.
Емкостный ток и QC в кабельных линиях больше чем в ВЛ. В кабельных линиях (КЛ) высокого напряжения учитывают QC, причем удельную емкостную мощность QC0 кВАр/км можно определить по таблицам в справочниках.
Активную проводимость (gл)учитывают для кабелей 110 кВ и выше.
Удельные параметры кабелей X0, а также QC0 приведенные в справочных таблицах ориентировочны, более точно их можно определить по заводским характеристикам кабелей.
Для чего на линиях электропередач сверхвысокого напряжения расщепляют фазу
А вы знаете по какой причине на линиях сверхвысокого напряжения (СВН) применяют не один провод в фазе, а сразу два, четыре и даже сразу восемь проводников? Сейчас я все подробно расскажу.
Что такое СВН линии
Но для лучшего понимания вкратце расскажу, что такое СВН. К линиям сверхвысокого напряжения причисляют такие высоковольтные линии, класс напряжения оных равен: 330 кВ, 500 кВ, 750 кВ и 1150 кВ.
Линии такого напряжения также называют системообразующими, так как с помощью них происходит объединение всей энергетической системы нашей страны. Кроме этого, по таким линиям также выполняется энергосвязь с системами других стран.
Предназначение таких линий заключено в передаче больших мощностей с минимальными потерями. Из всего вышесказанного следует, что поломка одной подобной линии окажется довольно чувствительным ударом для всей энергосистемы страны.
Внешний вид линии сверхвысокого напряжения
Именно по этой причине к надежности подобных линий предъявляются достаточно строгие требования. И одним из необычных конструктивных решений, которое призвано предоставить максимально возможную надежность и решить целый комплекс серьезных проблем – это разделение одного фазного проводника на несколько отдельных.
Для чего вообще расщепляют фазу
Конструктивно расщепленная фаза – это конструкция из нескольких проводников, которые закреплены таким образом, что каждый из проводов является вершиной правильного многоугольника.
Чтобы определить, на сколько проводов нужно разделить фазу, выполняется целый комплекс расчетов. Конечно, уже давно все рассчитано, и чтобы не писать здесь кучу страшных формул, скажу, что фазы СВН в зависимости от напряжения расщепляют следующим образом:
Зачем вообще нужно расщепление
Итак, за счет расщепления фазы на несколько проводников решаются следующие задачи:
А сейчас давайте поговорим о причинах более подробно
Итак, уже ясно, что данные линии нужны для перетока огромной мощности. Так расчетная токовая нагрузка на линию 500 кВ лежит в пределах 1000-1200 А, для СВН 750 кВ уже в пределах 200-2500 А, а для самой мощной линии в 1150кВ токовая нагрузка может достигать 5000 А.
Ну а теперь на минутку вообразите, какое должно быть сечение у провода, чтобы выдержать такие огромные токи.
Согласно ему, ток будет протекать по внешнему радиусу проводника и получается, что центральная часть окажется просто не задействована.
Кроме этого, из-за повышенного напряжения вокруг такого единичного проводника будет сформировано электрическое поле высокой мощности, и это станет причиной появления коронных разрядов на проводнике.
Причем разряд имеет также прямо пропорциональную зависимость от диаметра фазного проводника.
Но, как оказалось, если расположить провода одной фазы в вершинах правильного многоугольника, то полученную таким нехитрым способом систему вполне допустимо представить как единый проводник.
Кроме этого, чем больше показатель напряженности, при котором зарождается коронный разряд, тем ниже потери на корону.
Безусловно, во время проведения подсчетов учитывается огромное количество факторов и именно по этой причине СВН уникальны в своем виде и так кардинально отличаются от привычных для многих линий 6/10/34/110/220 кВ.
Статья оказалась для вас полезной и интересной? Тогда подпишитесь на канал и оцените его. Спасибо за ваше внимание!
Энергетический обмен
Обмен веществ
Энергетический обмен
Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).
Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.
Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.
Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).
Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.
Пластический обмен
АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.
В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.