Бозон хиггса простым языком при чем тут бог
Что такое бозон Хиггса и почему ученые хотели его открыть
Многие что-то где-то слышали про бозон Хиггса, а некоторые даже пробовали разобраться в вопросе того, что это такое. В итоге, объяснение данного процесса такое сложное, что понять все это не так легко. Мы просто знаем, что это важно, и все. Хотя иногда даже складывается ощущение, что ученые от нас что-то скрывают, и на самом деле аппаратура на миллиарды долларов, включая Большой адронный коллайдер, просто не нужна. Конечно, это не так, и физики сделали большое открытие (и продолжают делать новые), вот только надо понимать, даст ли это что-то нам с вами. Я имею в виду простых людей, которым интересно прочитать и удивиться, сколько денег потратили на новую лабораторию, но куда интереснее получить от этого какие-то преимущества. Давайте попробуем понять, светит ли нам мир во всем мире и будет в наших домах теплей от обнаружения бозона Хиггса. Да и вообще, что это такое.
В основе основ всегда есть что-то. Вопрос в том, как это найти.
Что такое бозон Хиггса
Прежде, чем рассказывать, чем является одно из самых важных открытий современной физики, надо дать этому определение. Желательно сделать это простым языком, а не так, чтобы его поняли только дипломированные физики. Этим и займемся.
Сделать это совсем просто — не просто. Еще в начале девяностых годов прошлого века в разных научных сообществах даже учреждались премии, которые должны были стимулировать ученых придумывать простые объяснения главной частицы всех теорий. Получалось так себе, но версии были очень разные.
Например, одна из версий абстрактно сравнивала ситуацию с вечеринкой. Приводилась в пример группа людей, которая присутствует на каком-либо мероприятии, куда в какой-то момент заходит известный человек. Для наглядности можно даже сказать знаменитый. В итоге, некоторые люди в помещении начинают перемещаться в его сторону и идут за ним, так как хотят с ним пообщаться.
Во время такого следования толпа может разбиваться на небольшие группы, которые, допустим, будут обсуждать какие-то новости или сплетни. Постепенно они начнут передавать сплетню друг другу и начнут образовывать уплотнения.
В этом объяснении помещение является полем Хиггса, знаменитость является частицей, движущейся в поле, а группы людей будут представлять из себя возмущения этого поля. Ничего не понятно? Согласен! Но ведь это одно из самых простых объяснений. Если вы можете более просто объяснить, что такое бозон Хиггса, расскажите об этом в нашем Telegram-чате. Может у вас получится.
Где-то тут должна ходить знаменитость и тогда мы поймем, что такое бозон Хиггса. Или нет…
Существует ли бозон Хиггса
Бозон Хиггса является фундаментальной частицей Стандартной модели. До недавнего времени найти ее было невозможно. При этом существование такой частицы физики предсказывали еще в шестидесятые годы прошлого века. У них не было оборудования, которое позволяло бы доказать существование таких частиц, и им нужен был инструмент, который создали только существенно позже. Произошло это в 2008 году, когда в ЦЕРНе (Европейский совет ядерных исследований) появился Большой адронный коллайдер.
Стандартная модель является теоретической конструкцией, применяемой в физике элементарных частиц. Она описывает электромагнитное взаимодействие всех элементарных частиц (слабое и сильное). Стандартная модель не описывает некоторые стороны физики, например, темную материю. Именно поэтому ее нельзя называть теорией всего. Картинка стандартной модели ”полностью сложилась”, когда открыли бозон Хиггса.
Почему бозон Хиггса называют ”частицей Бога”
С 2008 год ученые подкованы поисках ”Частицы Бога” (одно из названий бозона Хиггса). Так ее называют по предложению Леона Ледермана, который был нобелевским лауреатом и выпустил книгу с заголовком, начинающимся с этих слов. Хотя самому ученому больше по душе было название ”Проклятая частица”, но оно как-то не прижилось.
Благодаря этому американскому ученому бозон Хиггса стали называть именно так.
Как говорится, ”хоть чертом лысым назови”, но частицу в итоге нашли и произошло это в 2012 году. Помог в обнаружении как раз тот самый Большой адронный коллайдер. При этом после обнаружения ученые сообщили об этом, но не торопились делать поспешных выводов и выступали очень осторожно. В первые дни после эксперимента ученые говорили, что они только нашли элементарную частицу, похожую на бозон Хиггса.
Что даст обнаружение частицы Бога
Немного абсурдный пример. Какое-нибудь насекомое живет под землей и никогда не вылезает на поверхность, но догадывается, что небо синее (вот такое умное насекомое). Потом оно видит синий цвет и понимает, какое на самом деле небо, и что оно было право. Вот только изменит ли это что-то с точки зрения самого неба? Конечно, нет. Оно как было синим, так и осталось, а насекомое, как жило под землей, так и продолжило там жить.
Почему наша Вселенная такая странная и существуют ли законы физики?
Примерно так же дела обстоят и с бозоном Хиггса. Он не позволит начать нам путешествовать во времени, не поспособствует созданию вечного двигателя и не станет основной лекарства от всех болезней. По сути его обнаружение просто подтвердило предполагаемые принципы взаимодействия частиц и свело воедино все утверждения Стандартной теории. Возможно, из-за его появления вопросов в других областях физики, наоборот, станет только больше.
Визуализаций поиска бозона Хиггса очень много.
Где можно применить бозон Хиггса
На практике применение бозона Хиггса пока невозможно, да и не понятно, где его применять. Зато он важен для фундаментальной физики. Ну, хотя бы он не привел к концу света, о котором говорили многие скептики. Были даже теории о том, что столкновение частиц в Большом адронном коллайдера может породить черную дыру, которая поглотит всю нашу Солнечную систему. А Дэн Браун в своей известной книге ”Ангелы и демоны” сделал основной сюжета охоту за антивеществом, которое злоумышленники похитили в ЦЕРН.
В итоге у нас (у человечества) есть бозон Хиггса и Большой адронный коллайдер в центре Европы, стоимость строительства которого превысила 10 миллиардов долларов. Практической пользы для простых людей чуть меньше, чем нет совсем, но звучит вся эта история интересно. Ну, хоть физики довольны — может найдут применение своей находке.
Бозон Хиггса (перевод)
Мы, коллектив Quantuz, (пытаемся вступить в сообщество GT) предлагаем наш перевод раздела сайта particleadventure.org, посвященного бозону Хиггса. В данном тексте мы исключили неинформативные картинки (полный вариант см. в оригинале). Материал будет интересен всем интересующимся последними достижениями прикладной физики.
Роль бозона Хиггса
Теория 1964-го года
В 1964 году шестеро физиков-теоретиков выдвинули гипотезу существования нового поля (подобно электромагнитному), которым заполнено все пространство и решает критическую проблему в нашем понимании вселенной.
Независимо от этого другие физики построили теорию фундаментальных частиц, названную в итоге «Стандартной Моделью», которая обеспечивала феноменальную точность (экспериментальная точность некоторых частей Стандартной Модели достигает 1 к 10 миллиардам. Это равнозначно предсказанию расстояния между Нью-Йорком и Сан-Франциско с точностью около 0.4 мм). Эти усилия оказались тесно взаимосвязаны. Стандартная Модель нуждалась в механизме приобретения частицами массы. Полевую теорию разработали Питер Хиггс, Роберт Браут, Франсуа Энглер, Джералд Гуралник, Карл Хаген и Томас Киббл.
Бозон
Питер Хиггс понял, что по аналогии с другими квантовыми полями должна существовать частица, связанная с этим новым полем. Она должна иметь спин равным нулю и, таким образом, являться бозоном – частицей с целым спином (в отличие от фермионов, у которых спин полуцелый: 1/2, 3/2 и т.д.). И действительно он вскоре стал известен как Бозон Хиггса. Единственным его недостатком было то, что его никто не видел.
Какова масса бозона?
К несчастью, теория, предсказывающая бозон, не уточняла его массу. Прошли годы, пока не стало ясно, что бозон Хиггса должен быть экстремально тяжелым и, скорее всего, за пределами досягаемости для установок, построенных до Большого Адронного Коллайдера (БАК).
В то время, когда БАК начал сбор данных в 2010, эксперименты на других ускорителях показали, что масса бозона Хиггса должна быть больше, чем 115 ГэВ/с2. В ходе опытов на БАК планировалось искать доказательства бозона в интервале масс 115-600 ГэВ/с2 или даже выше, чем 1000 ГэВ/с2.
Каждый год экспериментально удавалось исключать бозоны с бОльшими массами. В 1990 было известно, что искомая масса должна быть больше 25 ГэВ/с2, а в 2003 выяснилось, что больше 115 ГэВ/с2
Столкновения на Большом Адронном Коллайдере могут порождать много чего интересного
Дэннис Оувербай в «Нью-Йорк Таймс» рассказывает про воссоздание условий триллионной доли секунды после Большого Взрыва и говорит:
«…останки [взрыва] в этой части космоса не видны с тех пор, как Вселенная охладилась 14 миллиардов лет назад – весна жизни мимолетна, снова и снова во всех ее возможных вариантах, как если бы Вселенная участвовала в собственной версии фильма «день Сурка»
Одним из таких «останков» может быть бозон Хиггса. Его масса должна быть очень велика, и он должен распадаться менее чем за наносекунду.
Анонс
После половины столетия ожиданий драма стала напряженной. Физики спали у входа в аудиторию, чтобы занять места на семинаре в лаборатории ЦЕРН в Женеве.
За десять тысяч миль отсюда, на другом краю планеты, на престижной международной конференции по физике частиц в Мельбурне сотни ученых со всех уголков земного шара собрались, чтобы услышать вещание семинара из Женевы.
Но сперва давайте взглянем на предпосылки.
Фейерверк 4 июля
4-го июля 2012 руководители экспериментов ATLAS и CMS на Большом адронном коллайдере представили их последние результаты поиска бозона Хиггса. Ходили слухи, что они собираются сообщить больше, чем просто отчет о результатах, но что?
Конечно же, когда результаты были представлены, обе коллаборации, проводившие эксперименты, отчитались о том, что они нашли доказательство существования частицы «похожей на бозон Хиггса» с массой около 125 ГэВ. Это определенно была частица, и если она не бозон Хиггса, то очень качественная его имитация.
Доказательство не было сомнительным, ученые располагали результатами в пять сигма, означающих, что существует менее одной вероятности на миллион, что данные являются просто статистической ошибкой.
Бозон Хиггса распадается на другие частицы
Бозон Хиггса распадается на другие частицы почти сразу же после того, как будет произведен, так что мы можем наблюдать только продукты его распада. Наиболее распространенные распады (среди тех, которые мы можем увидеть) показаны на рисунке:
Каждый вариант распада бозона Хиггса известен как «канал распада» или «режим распада». Хотя bb-режим является распространенным, многие другие процессы производят подобные частицы, так что если вы наблюдаете bb-распад, очень трудно сказать, появились ли частицы в связи с бозоном Хиггса или как-то еще. Мы говорим, что режим bb-распада имеет «широкий фон».
Лучшими каналами распада для поиска бозона Хиггса являются каналы двух фотонов и двух Z-бозонов.*
*(Технически для 125 ГэВ массы бозона Хиггса распад на два Z-бозона не возможен, так как Z-бозон имеет массу 91 ГэВ, вследствие чего пара имеет массу 182 ГэВ, большую чем 125 ГэВ. Однако то, что мы наблюдаем, является распадом на Z-бозон и виртуальный Z-бозон (Z*), масса которого много меньше.)
Распад бозона Хиггса на Z + Z
Z-бозоны также имеют несколько режимов распада, включая Z → e+ + e- и Z → µ+ + µ-.
Режим распада Z + Z был довольно прост для экспериментов ATLAS и CMS, когда оба Z-бозона распадались в одном из двух режимов (Z → e+ e- или Z → µ+ µ- ). На рисунке четыре наблюдаемых режима распада бозона Хиггса:
Конечный результат состоит в том, что иногда наблюдатель увидит (в дополнение к некоторым несвязанным частицам) четыре мюона, или четыре электрона, или два мюона и два электрона.
Как бозон Хиггса выглядел бы в детекторе ATLAS
В этом событии «джет» (струя) возникла идущей вниз, а бозон Хиггса – вверх, но он почти мгновенно распался. Каждая картинка столкновения называется «событием».
Пример события с возможным распадом бозона Хиггса в виде красивой анимации столкновения двух протонов в Большом адронном коллайдере можно посмотреть на сайте-источнике по этой ссылке.
В этом событии бозон Хиггса может быть произведен, а затем немедленно распадается на два Z-бозона, которые в свою очередь немедленно распадутся (оставив два мюона и два электрона).
Механизм, дающий массу частицам
Открытие бозона Хиггса является невероятным ключом к разгадке механизма того, как фундаментальные частицы приобретают массу, что и утверждали Хиггс, Браут, Энглер, Джералд, Карл и Киббл. Что это за механизм? Это очень сложная математическая теория, но ее главная идея может быть понятна в виде простой аналогии.
Представьте себе пространство, заполненное полем Хиггса, как вечеринку спокойно общающихся между собой физиков с коктейлями …
В какой-то момент входит Питер Хиггс, который создает волнение, двигаясь через комнату и притягивая группу поклонников с каждым шагом…
До того как войти в комнату профессор Хиггс мог двигаться свободно. Но после захода в комнату полную физиков его скорость уменьшилась. Группа поклонников замедлила его движение по комнате; другими словами, он приобрел массу. Это аналогично безмассовой частице, приобретающей массу при взаимодействии с полем Хиггса.
А ведь все что он хотел – это добраться до бара!
(Идея аналогии принадлежит проф. Дэвиду Дж. Миллеру из Университетского колледжа Лондона, который выиграл приз за доступное объяснение бозона Хиггса — © ЦЕРН)
Как бозон Хиггса получает собственную массу?
С другой стороны, в то время новости распространяются по комнате, они также формируют группы людей, но на этот раз исключительно из физиков. Такая группа может медленно перемещаться по комнате. Подобно другим частицам бозон Хиггса приобретает массу просто взаимодействуя с полем Хиггса.
Поиск массы бозоны Хиггса
Как вы найдете массу бозона Хиггса, если он распадается на другие частицы до того, как мы его обнаружим?
Если вы решили собрать велосипед и захотели знать его массу, вам следует складывать массы частей велосипеда: двух колес, рамы, руля, седла и т.д.
Но если вы хотите вычислить массу бозона Хиггса из частиц, на которые он распался, просто складывать массы не получится. Почему же нет?
Сложение масс частиц распада бозона Хиггса не работает, так как эти частицы имеют огромную кинетическую энергию по сравнению с энергией покоя (помним, что для покоящейся частицы E = mc 2 ). Это происходит вследствие того, что масса бозона Хиггса много больше, чем массы конечных продуктов его распада, поэтому оставшаяся энергия куда-то уходит, а именно — в кинетическую энергию возникших после распада частиц. Теория относительности говорит нам использовать равенство ниже для подсчета «инвариантной массы» набора частиц после распада, которая и даст нам массу «родителя», бозона Хиггса:
E 2 =p 2 c 2 +m 2 c 4
Поиск массы бозона Хиггса из продуктов его распада
Примечание Quantuz: тут мы немного не уверены в переводе, так как идут специальные термины. Предлагаем сравнить перевод с источником на всякий случай.
Когда мы говорим о распаде типа H → Z + Z* → e+ + e- + µ+ + µ-, то четыре возможные комбинации, показанные выше, могут возникнуть как от распада бозона Хиггса, так и от фоновых процессов, так что нам нужно взглянуть на гистограмму суммарной массы четырех частиц в указанных комбинациях.
Гистограмма масс подразумевает, что мы наблюдаем за огромным количеством событий и отмечаем количество тех событий, когда получается итоговая инвариантная масса. Она выглядит как гистограмма, потому что значения инвариантной массы разделены на столбцы. Высота каждого столбца показывает число событий, в которых инвариантная масса оказывается в соответствующем диапазоне.
Мы можем вообразить, что это результаты распада бозона Хиггса, но это не так.
Данные о бозоне Хиггса из фона
Красные и фиолетовые области гистограммы показывают «фон», в котором число четырехлептонных событий предположительно произойдут без участия бозона Хиггса.
Синяя область (см. анимацию) представляет «сигнальный» прогноз, в котором число четырехлептонных событий предполагают результат распада бозона Хиггса. Сигнал расположен на вершине фона, так как для того, чтобы получить общее прогнозируемое количество событий, вы просто складываете все возможные исходы событий, которые могут произойти.
Черные точки показывают число наблюдаемых событий, в то время как черные линии, проходящие через точки, представляют статистическую неопределенность в этих числах. Рост данных (см. следующий слайд) на уровне 125 ГэВ является признаком новой 125 ГэВ-частицы (бозон Хиггса).
Анимация эволюции данных для бозона Хиггса по мере накопления находится на оригинальном сайте.
Сигнал бозона Хиггса медленно растет над фоном.
Данные бозона Хиггса, распавшегося на два фотона
Распад на два фотона (H → γ+γ) имеет еще более широкий фон, но тем не менее сигнал четко выделяется.
Это гистограмма инвариантной массы для распада бозона Хиггса на два фотона. Как вы можете видеть, фон очень широкий по сравнению с предыдущим графиком. Так происходит потому, что существует гораздо больше процессов производящих два фотона, чем процессов с четырьмя лептонами.
Пунктирная красная линия показывает фон, а жирная красная линия показывает сумму фона и сигнала. Мы видим, что данные хорошо согласуются с новой частицей в районе 125 ГэВ.
Недостатки первых данных
Данные были убедительны, но не совершенны, и имели значительные недостатки. К 4-му июля 2012 не имелось достаточной статистики для определения темпа, с которым частица (бозон Хиггса) распадается на различные наборы менее массивных частиц (т.н. «ветвящиеся пропорции» ), предсказываемые Стандартной Моделью.
«Ветвящаяся пропорция» это просто вероятность того, что частица распадется через данный канал распада. Эти пропорции предсказываются Стандартной Моделью и измерены с помощью многократного наблюдения распадов одних и тех же частиц.
Следующий график показывает лучшие измерения ветвящихся пропорций, которые мы можем сделать по состоянию на 2013 год. Так как это пропорции, предсказанные Стандартной Моделью, ожидание равно 1.0. Точки являются текущими измерениями. Очевидно, что отрезки ошибок (красные линии) в большинстве все еще слишком велики, чтобы делать серьезные выводы. Эти отрезки сокращаются по мере получения новых данных и точки возможно могут перемещаться.
Как же узнать, что человек наблюдает событие–кандидат на бозон Хиггса? Существуют уникальные параметры, которые выделяют такие события.
Является ли частица бозоном Хиггса?
В то время как был обнаружен распад новой частицы, темп, с которым это происходит, к 4 июля все еще был не ясен. Даже было не известно, имеет ли открытая частица правильные квантовые числа – то есть имеет ли она спин и четность, требуемые для бозона Хиггса.
Другими словами, 4 июля частица выглядела как утка, но нам требовалось убедиться, что она плавает как утка и крякает как утка.
Все результаты экспериментов ATLAS и CMS Большого адронного коллайдера (а также коллайдера Тэватрон из Лаборатории Ферми) после 4 июля 2012 показали замечательную согласованность с ожидаемыми ветвящимися пропорциями для пяти режимов распада, обсуждаемых выше, и согласованность с ожидаемым спином (равным нулю) и четностью (равной +1), которые являются основными квантовыми числами.
Эти параметры имеют важное значение для определения того, действительно ли новая частица это бозон Хиггса или какая-то другая неожиданная частица. Так что все имеющиеся доказательства указывают на бозон Хиггса из Стандартной Модели.
Некоторые физики посчитали это разочарованием! Если новая частица это бозон Хиггса из Стандартной Модели, то, значит, Стандартная Модель по сути полностью завершена. Все, что теперь можно делать, так это проводить измерения с возрастающей точностью того, что уже открыто.
Но если новая частица окажется чем-то, непредсказанным Стандартной Моделью, то это откроет дверь множеству новых теорий и идей для проверки. Неожиданные результаты всегда требуют новых объяснений и помогают толкать теоретическую физику вперед.
Откуда во Вселенной появилась масса?
В обычной материи основная часть массы содержится в атомах, а, если быть точным, заключена в ядре, состоящим из протонов и нейтронов.
Протоны и нейтроны сделаны из трех кварков, которые приобретают свою массу, взаимодействуя с полем Хиггса.
НО… массы кварков вносят вклад в размере около 10 МэВ, это примерно 1% от массы протона и нейтрона. Так откуда же берется оставшаяся масса?
Так что лишь малая часть массы обычной материи во Вселенной принадлежит механизму Хиггса. Однако, как мы увидим в следующем разделе, Вселенная была бы полностью необитаема без хиггсовской массы, и некому было бы открыть хиггсовский механизм!
Если бы не было поля Хиггса?
Если бы не было поля Хиггса, на что была бы похожа Вселенная?
Это не так очевидно.
Определенно, ничего бы не связывало электроны в атомах. Они бы разлетались со скоростью света.
Но кварки связаны сильным взаимодействием и не могут существовать в свободном виде. Некоторые связанные состояния кварков, возможно, сохранились бы, но насчет протонов и нейтронов не ясно.
Вероятно, все это представляло бы собой ядерно-подобную материю. И может быть все это сколлапсировало в результате гравитации.
Факт, в котором мы точно уверены: Вселенная была бы холодной, тёмной и безжизненной.
Так что бозон Хиггса спасает нас от холодной, тёмной, безжизненной Вселенной, где нет людей, чтобы открыть бозон Хиггса.
Является ли бозон Хиггса бозоном из Стандартной Модели?
Мы точно знаем, что частица, которую мы открыли это бозон Хиггса. Нам также известно, что он очень похож на бозон Хиггса из Стандартной Модели. Но существует два момента, которые все еще не доказаны:
1. Несмотря на то, что бозон Хиггса из Стандартной Модели, имеются небольшие расхождения, свидетельствующие о существовании новой физики (неизвестной ныне).
2. Существуют больше чем один бозоны Хиггса, с другими массами. Это также говорит о том, что появятся новые теории для исследования.
Только время и новые данные помогут выявить либо чистоту Стандартной Модели и ее бозона либо новые волнующие физические теории.
Просто о сложном: бозон Хиггса или «Частица Бога»
Что такое бозон Хиггса? Несомненно, большинство из вас слышали об этой частице, которая как-то там была открыта и что-то дала ученым.
© medium.com
Однако многие ли разбираются в этом вопросе? Давайте попробуем максимально элементарно и доступно вам это объяснить.
Предисловие
То, что происходит в микромире, весьма трудно воспринимается человеческим разумом. Вы же знаете, что такое электроны? Большинство из вас еще со школьной скамьи представляет их себе, как маленькие шарики, что вращаются вокруг ядра. Протоны и нейтроны? Это тоже шарики, да?
Те, кто когда-то пытался немного разобраться с квантовой механикой, представляет себе элементарные частицы, как облачка. Когда кто-то видит текст «любая элементарная частица одновременно является волной», то в голове тут же возникает образ волны на море или на глади озера, куда был брошен камень.
Если человеку сказать, что частица — это событие в пределах некоторого поля, то тут же представляется какой-то промежуток из воспоминания или будущее событие, а в голове «гудит поле», как трансформаторная будка.
Дело в том, что такие слова, как частица, волна и поле на микроуровне не совсем корректно отражают реальность и представить их себе, сравнивая с обычными природными явлениями — некорректно. Поэтому попытайтесь отсеивать любые визуальные образы, так как они будут неверными и помешают пониманию.
Нужно принимать тот факт, что частицы в принципе не являются чем-то, что можно «пощупать», но так как мы люди и тактильное познание мира нам свойственно, то придется бороться с собственными инстинктами для понимания вопроса.
Электроны, фотоны или бозон Хиггса не являются одновременно частицей и волной. Они вообще нечто промежуточное и для этого нет подходящего слова (оно и не нужно). Человечество знает, как с ними работать, мы умеем проводить расчеты, но подобрать слово, которое бы описало мысленный образ… это проблематично. Дело в том, что эти штуки, которые являются элементарными частицами, в привычном мире невозможно сравнить хоть с чем-то. Это совершенно иной мир. Микромир.
Что искали и нашли на Большом адронном коллайдере (БАК)?
Есть общепринятая теория того, как устроен мир на мельчайших масштабах и она называется — Стандартная Модель. Согласно этой модели, в нашем мире есть несколько совершенно разных типов вещества, которые регулярно взаимодействуют между собой.
© sciencemag.org
Рассуждая о взаимодействиях, весьма удобно применять такие параметры, как масса, скорость и ускорение, что позволяет называть элементарные частицы чем-то вроде «частиц-переносчиков». Всего выделяют в данной модели 12 таких разновидностей. 11 из 12 частиц Стандартной модели наблюдались ранее. 12-ая частица — бозон, соответствующий полю Хиггса, придает многим остальным частицам массу, ограничивая их скорости движения. С некоторыми же частицами поле Хиггса не взаимодействует вовсе. Например, не оказывает влияния на фотоны и их масса равна нулю.
Теоретически бозон Хиггса предсказали в далеком 1964 году, но вот доказать его существование экспериментально смогли лишь в 2012 году. Все эти годы бозон искали не покладая рук!
До того, как заработал БАК, в Европейской организации по ядерным исследованиям (ЦЕРН) был электрон-позитронный коллайдер, в Иллинойсе был Теватрон, но этих мощностей было недостаточно, чтобы провести необходимые эксперименты. Хотя, эксперименты все же давали определенные результаты.
Бозон Хиггса — тяжелая частица и обнаружить его крайне непросто. Суть эксперимента очень проста, но вот реализация с последующей интерпретацией результатов — настоящая проблема.
Итак, берут два протона и разгоняются до околосветовой скорости. В какой-то момент времени их сталкивают «лоб в лоб». Протоны «в шоке» от такого удара начинают рассыпаться на вторичные частицы. В ходе этого процесса и пытались зафиксировать бозон Хиггса.
Усложняет эксперимент тот факт, что существование бозона можно подтвердить лишь косвенно. Период существования бозон Хиггса критически мал, как и расстояние между точками возникновения и исчезновения. Измерить этот промежуток времени и расстояние — невозможно, но! Бозон Хиггса не исчезает бесследно и его кратковременное пребывание доказывается за счет «продуктов распада».
Это все равно, что искать иглу в стоге сена. Нет, в огромном стоге сена. Нет, в тысячах огромных стогов сена! Дело в том, что бозон Хиггса распадается с разной вероятностью на разные комбинации частиц. Например, это могут быть кварк-антикварк, W-бозоны или вообще тау-частицы.
В некоторых случаях распад трудно отличить от распада других частиц, в других случаях вообще не успевают фиксировать происходящее. Как стало известно, детекторы лучше всего фиксируют превращение бозона Хиггса в 4 лептона (фундаментальные частицы), но вероятность такого события составляет лишь 0,013%.
В дело вступили детекторы ATLAS и CMS
Полгода экспериментов на БАК и миллионы столкновений за одну секунду дали необходимый результат. Ученые зафиксировали те самые 4 лептона (целых пять раз).
Зафиксировать это позволили гигантские детекторы ATLAS и CMS, которые выявили частицу с энергией 125ГэВ (единица измерения в квантовой физике). Именно этот показатель соответствовал теоретическому предсказанию бозона Хиггса.
Часть чего-то большего
Вдруг ошибка? Да, таким вопросом исследователи задались тоже. Поэтому, чтобы подтвердить открытие, было проведено много и очень много повторных экспериментов.
Ученые, после того, как открыли бозон Хиггса, начали сходиться на мнении, что Стандартная Модель может являться лишь частью более совершенной теории, которую лишь предстоит открыть. Вероятно, что это в корне изменит наше представление о мире и приведет к серьезным техническим прорывам. Возможно.
Почему открытие бозона Хиггса так важно?
Открытие бозона Хиггса стало одним из самых главных открытий 21 века. Именно его открытие позволяет ученым значительно лучше понимать то, как устроен наш мир. Если бы не бозон Хиггса, то все элементарные частицы были бы безмассовыми, как фотоны, а значит не было бы ничего того, что мы сегодня наблюдаем. Не было бы вообще всей Вселенной. Пожалуй, именно поэтому он и получил второе имя — «Частица Бога», так как основа мироздания лежит именно на нем.