Биополимер что это такое простыми
Биополимеры
Биополиме́ры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды.
Выделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).
Содержание
Белки
Белки имеют несколько уровней организации — первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при объединении нескольких молекул с третичной структурой.
Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются
Для предсказания вторичной структуры используются компьютерные программы.
Третичная структура или «фолд» образуется при взаимодействии вторичных структур и стабилируется нековалентными, ионными, водородными связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка), когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа.
Важный класс полимерных белков составляют Фибриллярные белки, самый известный из которых коллаген.
В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки. Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп.
Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы — ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определённые биохимические реакции, то есть обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок — инсулин — ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин — первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г., содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 10 6 и более.
Нуклеиновые кислоты
В соответствии с природой углевода, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК. Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка.
Полисахариды
Полисахариды, синтезируемые живыми организмами, состоят из большого количества моносахаридов, соединённых гликозидными связями. Зачастую полисахариды нерастворимы в воде. Обычно это очень большие, разветвлённые молекулы. Примерами полисахаридов, которые синтезируют живые организмы, являются запасные вещества крахмал и гликоген, а также структурные полисахариды — целлюлоза и хитин. Так как биологические полисахариды состоят из молекул разной длины, понятия вторичной и третичной структуры к полисахаридам не применяются.
Полисахариды образуются из низкомолекулярных соединений, называемых сахарами или углеводами. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путём конденсации гидроксильных групп.
Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками α-D-глюкопиранозы или её производных. Наиболее известна и широко применяема целлюлоза. В этом полисахариде кислородный мостик связывает 1-й и 4-й атомы углерода в соседних звеньях, такая связь называется α-1,4-гликозидной.
Химический состав, аналогичный целлюлозе, имеют крахмал, состоящий из амилозы и амилопектина, гликоген и декстран. Отличие первых от целлюлозы состоит в разветвлённости макромолекул, причём амилопектин и гликоген могут быть отнесены к сверхразветвлённым природным полимерам, то есть дендримерам нерегулярного строения. Точкой ветвления обычно является шестой атом углерода α-D-глюкопиранозного кольца, который связан гликозидной связью с боковой цепью. Отличие декстрана от целлюлозы состоит в природе гликозидных связей — наряду с α-1,4-, декстран содержит также α-1,3- и α-1,6-гликозидные связи, причем последние являются доминирующими.
Целлюлоза содержится в коре и древесине деревьев, стеблях растений: хлопок содержит более 90 % целлюлозы, деревья хвойных пород — свыше 60 %, лиственных — около 40 %. Прочность волокон целлюлозы обусловлена тем, что они образованы монокристаллами, в которых макромолекулы упакованы параллельно одна другой. Целлюлоза составляет структурную основу представителей не только растительного мира, но и некоторых бактерий.
В животном мире в качестве опорных, структурообразующих полимеров полисахариды «используются» лишь насекомыми и членистоногими. Наиболее часто для этих целей применяется хитин, который служит для построения так называемого внешнего скелета у крабов, раков, креветок. Из хитина деацетилированием получается хитозан, который, в отличие от нерастворимого хитина, растворим в водных растворах муравьиной, уксусной и соляной кислот. В связи с этим, а также благодаря комплексу ценных свойств, сочетающихся с биосовместимостью, хитозан имеет большие перспективы широкого практического применения в ближайшем будущем.
Крахмал относится к числу полисахаридов, выполняющих роль резервного пищевого вещества в растениях. Клубни, плоды, семена содержат до 70 % крахмала. Запасаемым полисахаридом животных является гликоген, который содержится преимущественно в печени и мышцах.
Из пентоз значение имеют полимеры арабинозы и ксилозы, которые образуют полисахариды, называемые арабинами и ксиланами. Они, наряду с целлюлозой, определяют типичные свойства древесины.
Биополимер
Биополиме́ры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды. Биополимеры состоят из одинаковых (или разных) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды.
Выделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).
Белки имеют несколько уровней организации — первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при обьединении нескольких молекул с третичной структурой.
Белки
Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются
Для предсказания вторичной структуры используются компьютерные программы.
Третичная структура или «фолд» образуется при взаимодействии вторичных структур и стабилируется нековалентными, ионными, водородными связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка), когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа.
Важный класс полимерных белков составляют Фибриллярные белки, самый известный из которых коллаген
В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки. Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп.
Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы – ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определенные биохимические реакции, т.е. обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок – инсулин – ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин – первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г., содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 10 6 и более.
Нуклеиновые кислоты
В соответствии с природой углевода, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК. Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка.
Полисахариды
Полисахариды, синтезируемые живыми организмами, состоят из большого количества моносахаридов, соединённых гликозидными связями. Зачастую полисахариды нерастворимы в воде. Обычно это очень большие, разветвлённые молекулы. Примерами полисахаридов, которые синтезируют живые организмы, являются запасные вещества крахмал и гликоген, а также структурные полисахариды — целлюлоза и хитин. Так как биологические полисахариды состоят из молекул разной длины, понятия вторичной и третичной структуры к полисахаридам не применяются.
Полисахариды образуются из низкомолекулярных соединений, называемых сахарами или углеводами. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путем конденсации гидроксильных групп.
Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками α-D-глюкопиранозы или ее производных. Наиболее известна и широко применяема целлюлоза. В этом полисахариде кислородный мостик связывает 1-й и 4-й атомы углерода в соседних звеньях, такая связь называется α-1,4-гликозидной.
Химический состав, аналогичный целлюлозе, имеют крахмал, состоящий из амилозы и амилопектина, гликоген и декстран. Отличие первых от целлюлозы состоит в разветвленности макромолекул, причем амилопектин и гликоген могут быть отнесены к сверхразветвленным природным полимерам, т.е. дендримерам нерегулярного строения. Точкой ветвления обычно является шестой атом углерода α-D-глюкопиранозного кольца, который связан гликозидной связью с боковой цепью. Отличие декстрана от целлюлозы состоит в природе гликозидных связей – наряду с α-1,4-, декстран содержит также α-1,3- и α-1,6-гликозидные связи, причем последние являются доминирующими.
Химический состав, отличный от целлюлозы, имеют хитин и хитозан, но они близки к ней по структуре. Отличие заключается в том, что при втором атоме углерода α-D-глюкопиранозных звеньев, связанных α-1,4-гликозидными связями, OH-группа заменена группами –NHCH3COO в хитине и группой –NH2 в хитозане.
Целлюлоза содержится в коре и древесине деревьев, стеблях растений: хлопок содержит более 90% целлюлозы, деревья хвойных пород – свыше 60%, лиственных – около 40%. Прочность волокон целлюлозы обусловлена тем, что они образованы монокристаллами, в которых макромолекулы упакованы параллельно одна другой. Целлюлоза составляет структурную основу представителей не только растительного мира, но и некоторых бактерий.
В животном мире в качестве опорных, структурообразующих полимеров полисахариды «используются» лишь насекомыми и членистоногими. Наиболее часто для этих целей применяется хитин, который служит для построения так называемого внешнего скелета у крабов, раков, креветок. Из хитина деацетилированием получается хитозан, который, в отличие от нерастворимого хитина, растворим в водных растворах муравьиной, уксусной и соляной кислот. В связи с этим, а также благодаря комплексу ценных свойств, сочетающихся с биосовместимостью, хитозан имеет большие перспективы широкого практического применения в ближайшем будущем.
Крахмал относится к числу полисахаридов, выполняющих роль резервного пищевого вещества в растениях. Клубни, плоды, семена содержат до 70% крахмала. Запасаемым полисахаридом животных является гликоген, который содержится преимущественно в печени и мышцах.
Прочность стволов и стеблей растений, помимо скелета из целлюлозных волокон, определяется соединительной растительной тканью. Значительную ее часть в деревьях составляет лигнин – до 30%. Его строение точно не установлено. Известно, что это относительно низкомолекулярный (M ≈ 104) сверхразветвленный полимер, образованный в основном из остатков фенолов, замещенных в орто-положении группами –OCH3, в пара-положении группами –CH=CH–CH2OH. В настоящее время накоплено громадное количество лигнинов как отходов целлюлозно-гидролизной промышленности, но проблема их утилизации не решена. К опорным элементам растительной ткани относятся пектиновые вещества и, в частности пектин, находящийся в основном в стенках клеток. Его содержание в кожуре яблок и белой части кожуры цитрусовых доходит до 30%. Пектин относится к гетерополисахаридам, т.е. сополимерам. Его макромолекулы в основном построены из остатков D-галактуроновой кислоты и ее метилового эфира, связанных α-1,4-гликозидными связями.
Из пентоз значение имеют полимеры арабинозы и ксилозы, которые образуют полисахариды, называемые арабинами и ксиланами. Они, наряду с целлюлозой, определяют типичные свойства древесины.
Биополимеры
Полезное
Смотреть что такое «Биополимеры» в других словарях:
БИОПОЛИМЕРЫ — высокомолекулярные (молекулярная масса 103 109) природные соединения белки, нуклеиновые кислоты, полисахариды, а также их производные. Являются структурной основой живых организмов и играют определяющую роль в процессах жизнедеятельности … Большой Энциклопедический словарь
БИОПОЛИМЕРЫ — высокомолекулярные (мол. м. 10л 109) природные соединения белки, нуклеиновые к ты, полисахариды, молекулы которых состоят из большого числа повторяющихся групп атомов или звеньев одинакового или различного химич. строения. Составляют структурную… … Биологический энциклопедический словарь
биополимеры — природные высокомолекулярные соединения (мол. масса 1°3 1°9 Да), являющиеся структурной основой всех живых клеток и играющие определяющую роль в процессах жизнедеятельности. К Б. относят белки, нуклеиновые кислоты, полисахариды, липиды, а также… … Словарь микробиологии
Биополимеры — класс полимеров, встречающихся в природе в естественном виде, входящих в состав живых организмов: белки, нуклеиновые кислоты, полисахариды. Источник: ВП П8 2322. Комплексная программа развития биотехнологий в Российской Федерации на период до… … Официальная терминология
Биополимеры — БИОПОЛИМЕРЫ, высокомолекулярные (молекулярная масса 103 109) природные соединения белки, нуклеиновые кислоты, полисахариды, а также их производные. Образуют структурную основу клеток, тканей, органов всех живых организмов и играют определяющую… … Иллюстрированный энциклопедический словарь
биополимеры — Термин биополимеры Термин на английском biopolymers Синонимы Аббревиатуры Связанные термины активный центр катализатора, антитело, белки, биоинженерия, биологическая мембрана, биосенсор, доставка лекарственных средств Определение… … Энциклопедический словарь нанотехнологий
Биополимеры — Биополимеры класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев мономеров. Мономеры … Википедия
биополимеры — ов; мн. (ед. биополимер, а; м.). Высокомолекулярные природные соединения (белки, нуклеиновые кислоты, некоторые углеводы), определяющие важнейшие процессы жизнедеятельности организма. ◁ Биополимерный, ая, ое. * * * биополимеры высокомолекулярные… … Энциклопедический словарь
биополимеры — (см. био. + полимеры) природные высокомолекулярные соединения, являющиеся структурной основой всех живых организмов и играющие определяющую роль в процессах жизнедеятельности; к биополимерам относятся белки, нуклеиновые кислоты, полисахариды и… … Словарь иностранных слов русского языка
биополимеры — biopolimerai statusas T sritis chemija apibrėžtis Biologiškai svarbūs gamtiniai stambiamolekuliai junginiai (baltymai, polisacharidai, nukleorūgštys). atitikmenys: angl. biopolymers rus. биополимеры … Chemijos terminų aiškinamasis žodynas
биополимеры — (био + полимеры) высокомолекулярные соединения биологического происхождения, молекулы которых представляют собой цепочки, образованные из большого числа повторяющихся групп атомов; к Б. относят белки, нуклеиновые кислоты и полисахариды … Большой медицинский словарь
Биополимеры что это, описание, прогнозы, применение
Биологические полимеры – полимеры нового поколения
На сегодняшний день биополимеры занимают незначительную долю рынка по производству и потреблению. Основной объем за синтетическими пластиками. По прогнозу ученых к 2020 году доля биоразлагаемых полимеров составит5%.
Однако многие ученые говорят, что будущее именно за биоматериалами, и с ними трудно спорить. Проблема экологии, ограниченности внутренних ресурсов Земли и утилизации именно пластиковых отходов стоит очень остро, поэтому наряду с разработкой новых способов утилизации и переработки пластика активно ведутся разработки новых видов быстро и безопасно разлагаемых полимеров. Именно к ним и относятся биополимеры.
Главной особенностью биологических пластиков и их отличием от синтетических полимеров является наличие в структуре закодированной информации – «памяти». Эти полимеры информативны, они имеют особое химическое строение. К таким материалам относятся белки, ДНК, РНК, углеводы, жиры, пептиды, полисахариды, нуклеиновая кислота.
Существует два больших классов биополимеров:
В качестве основы в биокомпозитах может выступать любое разлагаемое вещество – природный источник, армирующим наполнителем служит натуральное растительное волокно. Использование таких материалов может стать толчком для роста текстильной промышленности, сельского хозяйства, химической отрасли и нефтехимии.
Биокомпозиты делятся на три основные группы:
Наиболее изучаемые сегодня материалы первой группы. В качестве волокон используются семена хлопка, кокоса, стебли льна, джута, листья сизали, а также отходы текстильной промышленности.
Основными отраслями применения биокомпозитов являются: автомобилестроение (дверные панели, крыши, багажники, спинки сидений, приборные панели и т.д.), строительная промышленность (сайдинг, декинг, дверные коробки ит.д.), спортивный инвентарь, потребительские товары.
Прирост применения биокомпозитов в автомобилестроении каждый год составляет 20%. Спрос является следствием высоких прочностных и физико-механических характеристик, низкой стоимости и возобновляемости сырьевой базы.
Изделия имеют меньшую массу, так как волокна обладают меньшей плотностью. Немалую роль играет и экологичность получаемых товаров.Больше всего деталей из биокомпозитов можно увидеть в автомобилях марок БМВ, Ауди, Мерседес, Вольцваген.
На сегодняшний день рынок производства биокомпозитов неуклонно растет и на 2017 год составлял 531 млн долларов, объем потребления по прогнозам европейских компаний вырастет до 100 тысяч тонн. Легковые автомобили доминируют в потреблении и занимают 90% рынка.
Активно используются биокомпозиты из-за возможности снижения общего веса автомобиля, а значит, и меньшего потребления топлива. Так, Форд планирует к 2020 году сократить вес своих автомобилей на 340 кг в среднем, благодаря использованию биокомпозитов в конструкциях.
Отметим, что наиболее востребованное натуральное волокно для армирования биополимеров – льняное. Россия занимает 3 место по производству льна, что дает ей перспективы для роста и развития данного направления.
Биоэластомеры – это класс каучуков и резин. Самым распространенным материалом является тиленпропилендиеновый каучук (EPDM), который уже выпускается серийно. Широкое применение материал получил в производстве деталей для специальной техники (моющей и чистящей), в которой используются щелочи, горячая вода, пар, стиральные порошки и т.д.
Промышленность выпускает штоковые и поршневые уплотнители, кольца, детали стиральных машин, уплотнители для тормозной системы автомобилей.Эластичность материала сохраняется даже при минусовых температурах. В состав каучука входит сажа.
Среди сверхинновационных разработок применения биоэластомеров – 3Д-печать нейронов на спецпринтере. Материал графен является основой для создания прочных структур, которые по форме и свойствам напоминают нейроны, а связующим и укрепляющим звеном является биоэластомер. В будущем этими жидкими чернилами можно будет напечатать целую часть нервной системы или мозга человека.
Основным направлением изучения и использования биоэластомеров является именно медицина и биология. Ученые трудятся над созданием материалов, которые бы имитировали кожу, мягкие ткани, сосуды и т.д.
Рост данного вида материалов выше, чем у биокомпозитов –23,5% в год. В основном интерес проявляют европейские и азиатские компании(Франция, Япония, Таиланд и др.).
Очевидными плюсами является экологичность и безопасное, быстрое и полное разложение биополимеров. Также материалы позволяют сохранить энергию и генетическую информацию, что важно для разных отраслей промышленности.
Полиактиды (сахарные полимеры) обладают высокой приживаемостью, поэтому хорошо генерируют в организме человека, не вызывая отторженияи побочных эффектов. В связи с чем и были выбраны в качестве основы для хирургических имплантатов.
С экологической точки зрения биоразлагаемые полимеры не имеют аналогов. Они способствуют уменьшению углекислого газа в атмосфере, имеют стабильную структуру, легко компостируются.
Биологические соединения позволят в будущем уменьшить зависимость от невозобновляемых ископаемых видов топлива и пластика. Их прочность и долговечность также ведет к снижению использования синтетических веществ.
Интересно, что биологические технологии данного вида впервые были открыты еще в середине двадцатого века. Еще Генри Форд начал производство биополимерных автомобильных секций на своем заводе. Выпуску машин с биополимерными деталями помешала Вторая Мировая Война. Сегодня данная технология возрождается, и биопластические машины могут вернуться.
Недостатки биополимеров относятся только к их стоимости, которая еще высока (от 5 евро за килограмм). Также невозможно крупнотоннажное производство, но данная проблема со временем решится.
Основные производители биополимеров и продукции из них
Американская компания Telles вывела марку материала на основе крахмала – Mirel – это биополиэтилен, который имеет двойную цену по сравнению с синтетическим аналогом.
Компания DuPont также работает в данном направлении и выбрала для себя полимеры на основе полимолочной кислоты.
Тем временем на полное освоение мира биополимеров у человечества осталось не так много времени. По расчетам сырой нефти, из которой производится сегодня большинство синтетических пластиков, в запасах осталось не так много, и хватит ее примерно до 2050 года.
Прогнозы рынка биопластиков
Стабильный рост прогнозируется на всех мировых рынках, однако в общем пластиковом рынке процент биоматериалов составит лишь 1%. Потребители все больше доверяют чистым изделиям, однако тормозит ход развития дорогое производство, поэтому темпы снижены.
Когда производство биополимеров будет приближено по цене к производству обычных пластиков, то можно будет говорить о крупных масштабах потребления и изготовления данных материалов.