Бинарный поиск что это
Бинарный поиск
Бинарный поиск производится в упорядоченном массиве.
При бинарном поиске искомый ключ сравнивается с ключом среднего элемента в массиве. Если они равны, то поиск успешен. В противном случае поиск осуществляется аналогично в левой или правой частях массива.
Алгоритм может быть определен в рекурсивной и нерекурсивной формах.
Количество шагов поиска определится как
где n-количество элементов,
↑ — округление в большую сторону до ближайшего целого числа.
На каждом шаге осуществляется поиск середины отрезка по формуле
mid = (left + right)/2
Если искомый элемент равен элементу с индексом mid, поиск завершается.
В случае если искомый элемент меньше элемента с индексом mid, на место mid перемещается правая граница рассматриваемого отрезка, в противном случае — левая граница.
left = 0, right = 19
mid = (19+0)/2=9
Сравниваем значение по этому индексу с искомым:
mid = (9+19)/2=14
Сравниваем значение по этому индексу с искомым:
84 > 82
Сдвигаем правую границу:
right = mid = 14
mid = (9+14)/2=11
Сравниваем значение по этому индексу с искомым:
mid = (11+14)/2=12
Сравниваем значение по этому индексу с искомым:
mid = (12+14)/2=13
Сравниваем значение по этому индексу с искомым:
82 = 82
Решение найдено!
Чтобы уменьшить количество шагов поиска можно сразу смещать границы поиска на элемент, следующий за серединой отрезка:
left = mid + 1
right = mid — 1
Бинарный поиск в C++: подробное руководство
Сегодня мы и изучим его. Также попытаемся ответить на такие вопросы: как бинарный поиск работает в программе, плюсы и минусы его использования у себя в коде и в каких структурах данных можно его применять, а в каких нет. Поехали!
Что такое бинарный поиск
Линейный поиск по сравнению с бинарным — дешевая подделка. Бинарный поиск — очень быстрый алгоритм с не сложной реализацией, который находит элемент с определенным значением в уже отсортированном массиве.
Очень важно помнить! Алгоритм будет работать правильно, только с отсортированным массивом. А если по случайности вы забыли отсортировать массив перед его использованием, то в большинстве случаев тот ответ, который подсчитал алгоритм, будет неверным.
Принцип работы бинарного поиска
Самым легким и самым долгим по времени решением, будет поочередная проверка пассажиров в комнате с прибором (это линейный поиск). Но это слишком долго.
В задаче выше охранники использовали алгоритм двоичного поиска для нахождения диверсанта. В обычной программе принцип работы бинарного поиска такой же, как и в примере, выше.
Как создать бинарный поиск в C++
Давайте посмотрим как работает бинарный поиск на примере.В примере ниже в строке 9 мы создали массив arr на 10 элементов и в строке 12 предложили пользователю с клавиатуры заполнить его ячейки.
В строке 20 мы предлагаем пользователю ввести ключ (который нужно будет найти в массиве), а дальше мы с бинарным поиском проверим массив на наличие введенного ключа пользователем. Если мы найдем ключ в массиве, то выведем индекс ячейки, в которой находится ключ.
Двоичный поиск
Основные авторы описания: А. В. Чупин.
Синонимы названия метода: двоичный поиск, бинарный поиск, метод деления пополам, метод половинного деления, дихотомия.
Содержание
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Метод двоичного поиска используется в качестве быстрого варианта поиска в заранее отсортированном массиве. Получил распространение благодаря как наименьшей из возможных высоте алгоритма, так и из-за ряда своих вычислительных характеристик, а также (в среде нечисленных алгоритмов) из-за своей рекурсивности, то есть лёгкости записи.
Основная идея заключается в дроблении массива на половины и дальнейшем рекурсивном поиске в одной из них.
Альтернативой служит метод линейного поиска (то есть полного перебора), имеющий, соответственно, линейную вычислительную сложность ( [math]O(n)[/math] ), однако работающий на произвольно упорядоченных массивах. Если сравнивать возможности применения обоих методов, то линейный поиск выгоднее применять 1) для поиска в коротких массивах; 2) когда требуется провести поиск небольшое число раз; 3) в потоковом случае. В отличие от него, бинарный поиск требует предобработку (сортировку, сложность которой не менее [math]O(n \log_2 n)[/math] ) и особенно полезен, если массив большой и поиск проводится неоднократное (точнее, более, чем порядка [math]O(\log_2 n)[/math] ) число раз.
Метод позволяет различные обобщения и видоизменения:
Вариации также могут касаться формата и сути вывода результата в отдельных случаях (см. варианты возврата при ненахождении).
Очень близко к метод бинарного поиска по массиву стоит непрерывный аналог — метод бисекции (метод деления пополам) нахождения корня непрерывной функции на заданном отрезке. Самое большое отличие заключается в вычислении значения функции вместо нахождения элемента массива по его индексу, а также использование действительных чисел в качестве аргумента в отличие от целых чисел для индексации элементов массива.
По своему определению, алгоритм может быть записан в одной из двух основных форм — рекурсивной и итеративной. Поскольку вычислительное ядро в них одинаковое, но в рекурсивном есть дополнительная нагрузка по вызову функций и хранению их стека, в данной статье рассматривается только итеративная версия.
1.2 Математическое описание алгоритма
Вычисляемые данные: индекс (номер позиции) элемента, равного искомому (или ответ, что такого элемента нет).
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
По определению алгоритм состоит из рекурсивных вызовов самого себя для меньших массивов. Стандартные макрооперации не используются.
1.5 Схема реализации последовательного алгоритма
В рекурсивном варианте определяется функция, принимающая в числе прочих параметров индексы концов отрезка массива, на котором идёт текущий поиск, а операция «идём к шагу 2» означает вызов той же функции поиска с другими индексами концов отрезка.
В итеративном варианте пп. 2-5 обёрнуты в бесконечный цикл, выход из которого возможен либо в п. 2 (как неуспешный), либо в п. 5, когда значение найдено.
1.6 Последовательная сложность алгоритма
Таким образом, алгоритм обладает логарифмической временной сложностью по данным и даже последовательная реализация достаточно быстра и, в принципе, не нуждается в распараллеливании.
1.7 Информационный граф
Граф алгоритма является параметризованным (зависит от размера массива) и недетерминированным (в смысле, что порядок вычислений зависит от начальных данных).
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
Дополнительные ограничения: массив упорядочен.
Выходные данные: индекс элемента [math]A[/math] в массиве, если он есть.
Объём выходных данных: один скаляр.
1.10 Свойства алгоритма
Алгоритм абсолютно устойчив, так как действия производятся только над целыми числами, и поэтому погрешность всегда равна 0.
2 Программная реализация алгоритма
Возможная простейшая реализация алгоритма на языке C:
Здесь ряд индексов [math]l_k, m_k, r_k[/math] из математической схемы алгоритма превращён в одну переменную, поскольку требуются только последние значения этих рядов.
2.1 Особенности реализации последовательного алгоритма
Обычно в качестве ответа выводят −1, если число не найдено.
Другие возможные варианты в данной ситуации (выбор зависит от того, как и где будет использоваться метод поиска как базовая единица) [8] :
2.1.1 Частые ошибки при реализации
Несмотря на то, что код достаточно прост, в нём есть несколько ловушек, на которые нужно обратить внимание [9] :
2.2 Локальность данных и вычислений
Пространственная локальность достаточно плохая — начальные обращения в память гарантированно далеки друг от друга. Однако расстояние с номером итерации экспоненциально уменьшается и в конце есть надежда на использование преимуществ локальности обращений.
Временная локальность ещё хуже — один и тот же элемент массива никогда не требуется дважды.
2.2.1 Локальность реализации алгоритма
2.2.1.1 Структура обращений в память и качественная оценка локальности
На рис. 3 представлен профиль обращений в память для реализации последовательного алгоритма двоичного поиска. В программе задействован массив и три переменные, на рисунке показаны обращения только к элементам этого массива. Каждая точка соответствует одной итерации алгоритма.
Видно, что на каждой итерации используется одна ячейка памяти, при этом адреса располагаются достаточно хаотично. Пространственная локальность от очень плохой постепенно улучшается до идеальной, когда идут обращения только в близкие ячейки памяти. Данные из массива никогда не используются повторно, поэтому временная локальность плохая.
2.2.1.2 Количественная оценка локальности
2.3 Возможные способы и особенности параллельной реализации алгоритма
Однако при этом потребуется предусмотреть обмен результатами сравнения своей точки деления на каждом процессоре для определения искомого интервала для следующей итерации. Это потребует минимум одной коллективной операции обмена, что ставит под сомнение эффективность распараллеливания.
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Масштабируемость алгоритма
2.4.2 Масштабируемость реализации алгоритма
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
Использовать алгоритм в любой реализации для архитектур с разделённой памятью смысла не имеет — из-за нелокального доступа к исходным данным и малого количества вычислительных операций даже в параллельной модификации выигрыш будет съедаться коммуникациями.
Применение систем с общей памятью с помощью OpenMP теоретически имеет смысл, однако для получения хоть какого-то ускорения требуется выполнение нескольких условий:
30 поискам в массиве из миллиарда элементов).
Целочисленный двоичный поиск
Целочисленный двоичный поиск (бинарный поиск) (англ. binary search) — алгоритм поиска объекта по заданному признаку в множестве объектов, упорядоченных по тому же самому признаку, работающий за логарифмическое время.
Задача: |
Пусть нам дан упорядоченный массив, состоящий только из целочисленных элементов. Требуется найти позицию, на которой находится заданный элемент. |
Содержание
Принцип работы [ править ]
Двоичный поиск заключается в том, что на каждом шаге множество объектов делится на две части и в работе остаётся та часть множества, где находится искомый объект. Или же, в зависимости от постановки задачи, мы можем остановить процесс, когда мы получим первый или же последний индекс вхождения элемента. Последнее условие — это левосторонний/правосторонний двоичный поиск.
Правосторонний/левосторонний целочисленный двоичный поиск [ править ]
Использовав эти два вида двоичного поиска, мы можем найти отрезок позиций [math][l,r][/math] таких, что [math]\forall i \in [l,r] : a[i] = x[/math] и [math] \forall i \notin [l,r] : a[i] \neq x [/math]
Пример: [ править ]
Если искомого элемента в массиве нет, то правосторонний поиск выдаст максимальный элемент, меньший искомого, а левосторонний наоборот, минимальный элемент, больший искомого.
Алгоритм двоичного поиска [ править ]
Код [ править ]
Несколько слов об эвристиках [ править ]
Эвристика с завершением поиска, при досрочном нахождении искомого элемента
Заметим, что если нам необходимо просто проверить наличие элемента в упорядоченном множестве, то можно использовать любой из правостороннего и левостороннего поиска. При этом будем на каждой итерации проверять «не попали ли мы в элемент, равный искомому», и в случае попадания заканчивать поиск.
Эвристика с запоминанием ответа на предыдущий запрос
Применение двоичного поиска на некоторых неотсортированных массивах [ править ]
Задача: |
Массив образован путем приписывания в конец массива, отсортированного по возрастанию, массива, отсортированного по убыванию. Требуется максимально быстро найти элемент в таком массиве. |
Время выполнения алгоритма — [math] O(\log n)[/math] (так как и бинарный поиск, и тернарный поиск работают за логарифмическое время с точностью до константы).
Задача: |
Два отсортированных по возрастанию массива записаны один в конец другого. Требуется максимально быстро найти элемент в таком массиве. |
Мы имеем массив, образованный из двух отсортированных подмассивов, записанных один в конец другого. Запустить сразу бинарный или тернарный поиски на таком массиве нельзя, так как массив не будет обязательно отсортированным и он не будет иметь [math]1[/math] точку экстремума. Поэтому попробуем найти индекс последнего элемента левого массива, чтобы потом запустить бинарный поиск два раза на отсортированных массивах.
Задача: |
Массив образован путем циклического сдвига массива, образованного приписыванием отсортированного по убыванию массива в конец отсортированного по возрастанию. Требуется максимально быстро найти элемент в таком массиве. |
В случае же убывание-возрастание-убывание ( [math] \searrow \nearrow \searrow [/math] ) может быть, что будет неправильно найден минимум. Найдем правильный минимум аналогично поиску максимума в предыдущем абзаце.
Затем, в зависимости от типа нашего массива, запустим бинарный поиск три раза на каждом промежутке.
Переполнение индекса середины [ править ]
Бинарный поиск в JavaScript. Практический пример
Что такое бинарный поиск?
Когда нужно выполнить поиск в массиве, простейшим способом может быть использование indexOf() или, возможно, цикла for(). Любой из этих способов будет начинать перебирать массив начиная с начала и переходить по каждому элементу массива до тех пор, пока не будет найдено нужное значение.
Теперь сравним это с бинарным поиском.
Бинарный поиск позволяет выполнять поиск в отсортированном массиве путем многократного разбиения массива пополам.
Бинарный поиск выполняется путем проверки того, является ли искомое значение больше, меньше или равно среднему значению в нашем массиве:
При работе с большими объемами данных гораздо эффективнее использовать бинарный поиск, поскольку при каждой итерации удаляется половина ненужных значений массива, а не только одно неподходящее значение.
Проект
Одним из наиболее важных аспектов диаграммы является подсказка, отображающая соответствующие данные при наведении курсора на диаграмму. При перемещении мыши на подсказке обновляются данные из ближайшей точки диаграммы. Пример:
У нас есть массив всех координат и соответствующих им данных. Координаты находятся внутри объекта, и каждый объект имеет svgX ключ. Выглядит это примерно так:
Изначально я использовал простой цикл for, чтобы сравнить текущую координату X курсора мыши со всеми значениями svgX в моем массиве данных.
Вот как выглядит код цикла for. Мы перебираем все значения svgX, и объект со значением, которое ближе к координате X курсора мыши — это тот объект, данные которого мы хотим показать.
Сначала мы получаем ширину нашего svg элемента и создаем пустой объект для хранения нашей ближайшей точки.
Затем мы перебираем массив данных. Каждое svgX значение объекта в нашем массиве сравнивается с координатой X курсора мыши. Если текущая итерация цикла имеет значение ближе к курсору, чем любая другая итерация, то эта точка устанавливается как наша ближайшая точка.
При небольшом количестве данных этот метод является относительно быстрым. Однако, если у нас есть большой объем данных, этот вариант уже не будет таким эффективным.
Бинарный поиск
Ниже приведен пример кода бинарного поиска для поиска ближайшего значения:
Нам нужно пять основных составляющих для нашего бинарного поиска:
Как видно из приведенного выше кода в строке 10, при запуске бинарного поиска мы передаем на вход весь массив данных, объект мыши, начальную позицию 0 и конечную позицию, равную полному размеру массива:
Когда у нас есть наши данные, середину массива найдем путем деления на два, суммы из начальной и конечной позиций. Чтобы не получить дробь, результирующее число округляется вниз:
Таким образом, середина 0 + (4-0)/2 округленная вниз = 2:
Мы помним, что для этого примера наше целевое значение равно 3,7. После того как мы нашли среднюю позицию, мы проверяем, равна ли она нашему целевому значению. Если это так, мы возвращаем объект, и все готово!
К сожалению, среднее значение массива = 3. А нашей целью является 3,7.
Далее мы проверим, совпадает ли наша конечная позиция — 1, с нашей начальной позицией:
Это условие сработает, когда наш массив уменьшился до двух финальных значений, и наша цель находится между ними. В этом случае мы возвращаем ближнее значение.
На текущей итерации условие вернет false.
Далее мы проверяем, больше ли наше целевое значение за среднее:
Это наш случай! Целевое значение 3,7 больше чем среднее 3. Мы можем избавиться от первых двух значений в нашем массиве:
Используя рекурсию мы возвращаем новый вызов функции binarySearch(). Передаем в функцию наш массив, целевое значение 3,7, среднее значение в качестве начальной позиции и конечное значение в качестве конечной позиции.
Наш новый вызов binarySearch(), будет искать от позиции 2 до data.length-1:
Функция находит новую среднюю позицию data[3]:
Поскольку наше целевое значение 3,7 меньше среднего значения 4, мы отбрасываем правую сторону массива и возвращаем новый вызов функции binarySearch(). На этот раз наша начальная позиция остается data[2], а конечная позиция меняется на среднюю data[3].
Мы дошли до момента, когда наше условие выполнится:
Поскольку наше конечное значение минус единица равняется нашему начальному значению, мы знаем, что целевое значение находится где-то между ними. Мы должны возвратить элемент массива, значение которого ближе к значению 3,7. Поскольку 4 (конечное значение) ближе, то соответственно мы и возвращаем соответствующий элемент: data[3].
Тест скорости
Если объем данных небольшой, рекурсия может быть медленнее, чем цикл for. При тестировании на jsperf с 10 элементами, рекурсивная функция в среднем на 3% медленнее, чем цикл for. Однако при количестве элементов в 10 000, цикл for на 72% медленнее, чем рекурсивная функция. Это означает, что рекурсия практически в два раза быстрее, чем цикл for, и это огромная экономия времени!
Надеюсь, теперь вам понятны основы бинарного поиска в JavaScript!