Бериллий с чем взаимодействует

Бериллий: способы получения и химические свойства

Бериллий Be — это cветло-серый, легкий, хрупкий металл. На воздухе покрывается оксидной пленкой. Восстановитель.

Относительная молекулярная масса Mr = 9,012; относительная плотность для твердого и жидкого состояния d = 1,85; tпл = 1287º C; tкип = 2507º C.

Способ получения

1. В результате электролиза расплава хлорида бериллия образуются бериллий и хлор :

3. Оксид бериллия легко восстанавливается магнием при 700 — 800º С, образуя бериллий и оксид магния:

BeO + Mg = MgO + Be

4. Фторид бериллия также легко восстанавливается магнием при 700 — 750º С с образованием бериллия и фторида магния:

BeF2 + Mg = Be + MgF2

Качественная реакция

Качественная реакция на бериллий — окрашивание пламени горелки в коричнево — красный цвет.

Химические свойства

1.1. Бериллий взаимодействует с азотом при 700 — 900º С образуя нитрид бериллия:

1.2. Бериллий сгорает в кислороде (воздухе) при 900º С с образованием оксида бериллия:

2Be + O2 = 2BeO

Be + Br2 = BeBr2

1.4. С серой бериллий реагирует при температуре 1150º C с образованием сульфида бериллия:

Be + S = BeS

1.5. С углеродом бериллий реагирует при 1700 — 1900º С и вакууме, образуя карбид бериллия:

2Be + C = Be2C

2. Бериллий активно взаимодействует со сложными веществами:

2.2. Бериллий взаимодействует с кислотами:

2.2.1. Бериллий реагирует с разбавленной соляной кислотой, при этом образуются хлорид бериллия и водород :

Be + 2HCl = BeCl2 + H2

2.2.2. Реагируя с разбавленной и горячей азотной кислотой бериллий образует нитрат бериллия, газ оксид азота (II) и воду:

2.2.3. В результате реакции концентрированной фтороводородной кислоты и бериллия образуется осадок тетрафторобериллат водорода и газ водород:

2.3. Бериллий может взаимодействовать с основаниями:

2.3.1. Бериллий взаимодействует с гидроксидом натрия в расплаве при температуре 400 — 500º С, при этом образуется бериллат натрия и водород:

2.4. Бериллий вступает в реакцию с газом аммиаком при 500 — 700º С. В результате данной реакции образуется нитрид бериллия и водород:

2.5. Бериллий может вступать в реакцию с оксидами :

В результате взаимодействия бериллия и оксида магния при температуре 1075º С образуется оксид бериллия и магний:

Be + MgO = BeO + Mg

3. Бериллий взаимодействует с органическими веществами :

Бериллий может вступать в реакцию с ацетиленом при 400 — 450º С, образуя карбид бериллия и водород:

Источник

Оксид бериллия: способы получения и химические свойства

Оксид бериллия BeO — бинарное неорганическое вещество . Белый, тугоплавкий, термически устойчивый, летучий в токе O2 и водяного пара. Проявляет амфотерные свойства.

Относительная молекулярная масса Mr = 25,01; относительная плотность для тв. и ж. состояния d = 3,015; tпл ≈ 2580º C; tкип = 4260º C.

Способ получения

1. Оксид бериллия получается при разложении карбоната бериллия при температуре выше 180º C. В результате разложения образуется оксид бериллия и углекислый газ:

2. В результате разложения нитрата бериллия при температуре выше 1000º С образуется оксид бериллия, оксид азота (IV) и кислород:

3. Гидроксид бериллия разлагается при 200 — 800º С с образованием оксида бериллия и воды:

4. Оксид бериллия можно получить путем разложения сульфата бериллия при температуре 547–600º C, образуется оксид бериллия и оксид серы (VI):

Химические свойства

1. Оксид бериллия реагирует с простыми веществами :

1.1. В результате реакции между оксидом бериллия и фтором при температуре выше 400º С образуется фторид бериллия и кислород:

1.2. Оксид бериллия реагирует с углеродом и образует карбид углерода и угарный газ:

2BeО + 3C = Be2C + 2CO

1.3. Магний реагирует с оксидом бериллия при 700 — 800º С. На выходе образуется оксид магния и бериллий:

BeO + Mg = MgO + Be

2. Оксид бериллия взаимодействует со сложными веществами:

2.2.1. О ксид бериллия с концентрированной соляной кислотой образует хлорид бериллия и воду:

BeO + 2HCl = BeCl2 + H2O

2.2.2. В результате реакции между оксидом бериллия и концентрированной серной кислотой образуется сульфат бериллия и вода:

2.2.3. Если смешать горячую плавиковую кислоту с оксидом бериллия при 220 º С на выходе образуется фторид бериллия и вода

BeO + 2HF = BeF2 + H2O

2.2.4. Оксид бериллия вступает в реакцию с концентрированной плавиковой кислотой образуя тетрафторобериллат водорода и воду:

2.3. При взаимодействии бериллия с оксидами образуются соли:

2.3.1. Реагируя с оксидом кремния при температуре 1500 — 1600º С оксид бериллия образует силикат бериллия:

BeO + SiO2 = BeSiO3

2.3.2. Оксид бериллия реагирует с оксидом алюминия и образует алюминат бериллия:

2.3.3. В результате взаимодействия оксида бериллия и оксида натрия при 500º С образуется бериллат натрия:

2.4. Оксид бериллия вступает в реакции с основаниями :

BeO + 2NaOH + H2O = Na2[Be(OH)4]

2.5. Оксид бериллия реагирует с солями:

Оксид бериллия взаимодействует с карбонатами при сплавлении и образует бериллат и воду:

Источник

Гидроксид бериллия: способы получения и химические свойства

Гидроксид бериллия Be(OH)2 — неорганическое соединение. Белый, при нагревании разлагается. Не растворяется в воде. Проявляет амфотерные свойства.

Относительная молекулярная масса Mr = 43,03; относительная плотность для тв. и ж. состояния d = 1,92.

Способы получения

1. Гидроксид бериллия получают в результате взаимодействия хлорида бериллия и разбавленного раствора гидроксида натрия , на выходе образуется хлорид натрия и гидроксид бериллия :

BeCl2 + 2NaOH = Be(OH)2↓ + 2NaCl

При избытке раствора щелочи образуется комплексная соль:

2 . При взаимодействии бериллия с водой в состоянии кипения образуется гидроксид бериллия или оксид бериллия и водород:

3. Хлорид бериллия при взаимодействии с концентрированным гидратом аммиака образует хлорид аммония и гидроксид бериллия:

4. Сульфат бериллия взаимодействует с разбавленным раствором гидроксида натрия, образуя гидроксид бериллия и сульфат натрия:

5. В результате реакции между сульфатом бериллия и концентрированным гидратом аммиака образуется гидроксид бериллия и сульфат аммония:

Качественная реакция

Химические свойства

1. Гидроксид бериллия взаимодействует со сложными веществами :

1.1. Гидроксид бериллия реагирует с кислотами:

1.1.1. В результате реакции между гидроксидом бериллия и разбавленной соляной кислотой образуется хлорид бериллия и вода:

1.1.2. С разбавленной плавиковой кислотой гидроксид бериллия также может взаимодействовать. При этом образуются фторид бериллия и вода:

1.1.3. Гидроксид бериллия вступает в реакцию с концентрированной плавиковой кислотой, образуя на выходе тетрафторобериллат водорода и воду:

1.2. Гидроксид бериллия взаимодействует с оксидами:

1.2.1. В результате взаимодействия гидроксида бериллия и углекислого газа образуется дигидроксокарбонат бериллия и вода:

1.3. Гидроксид бериллия вступает в реакцию с основаниями :

1.3.1. Гидроксид бериллия взаимодействует с концентрированным раствором гидроксида натрия образуя тетрагидроксобериллат натрия:

1.3.2. При взаимодействии гидроксида бериллия и гидроксида натрия при 200 — 300º С с образованием бериллата натрия и воды:

2. Гидроксид бериллия разлагается при температуре 200 — 800º С, образуя на выходе оксид бериллия и воду:

Источник

Щелочноземельные металлы и их соединения

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Элементы II группы главной подгруппы

Элементы II группы главной подгруппы

Положение в периодической системе химических элементов

Щелочноземельные металлы расположены во второй группе главной подгруппе периодической системы химических элементов Д.И. Менделеева (или просто во 2 группе в длиннопериодной форме ПСХЭ). На практике к щелочноземельным металлам относят только кальций Ca, стронций Sr, барий Ba и радий Ra. Бериллий Be по свойствам больше похож на алюминий, магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них. Однако, согласно номенклатуре ИЮПАК, щелочноземельными принято считать все металлы II группы главной подгруппы.

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Электронное строение и закономерности изменения свойств

Рассмотрим некоторые закономерности изменения свойств щелочноземельных металлов.

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Физические свойства

Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.

Кристаллическая решетка щелочноземельных металлов в твёрдом состоянии — металлическая. Следовательно, они обладают высокой тепло- и электропроводимостью. Кипят и плавятся при высоких температурах.

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Нахождение в природе

Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочноземельные металлы:

ДоломитCaCO3 · MgCO3 — карбонат кальция-магния.

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Магнезит MgCO3 карбонат магния.

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Кальцит CaCO3 карбонат кальция.

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Гипс CaSO4 · 2H2O – дигидрат сульфата кальция.

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Барит BaSO4 — сульфат бария.

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Витерит BaCO3 – карбонат бария.

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Способы получения

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

или восстановлением прокаленного доломита в электропечах при 1200–1300°С:

2(CaO · MgO) + Si → 2Mg + Ca2SiO4

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий получают восстановлением оксида бария алюминием в вакууме при 1200 °C:

4BaO+ 2Al → 3Ba + Ba(AlO2)2

Качественные реакции

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Цвет пламени:
Caкирпично-красный
Srкарминово-красный (алый)
Baяблочно-зеленый

Качественная реакция на ионы магния : взаим одействие с щелочами. Ионы магния осаждаются щелочами с образованием белого осадка гидроксида магния:

Mg 2+ + 2OH — → Mg(OH)2

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Качественная реакция на ионы кальция, стронция, бария : взаим одействие с карбонатами. При взаимодействии солей кальция, стронция и бария с карбонатами выпадает белый осадок карбоната кальция, стронция или бария :

Ca 2+ + CO3 2- → CaCO3

Ba 2+ + CO3 2- → BaCO3

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Качественная реакция на ионы стронция и бария : взаим одействие с карбонатами. При взаимодействии солей стронция и бария с сульфатами выпадает белый осадок сульфата бария и сульфата стронция :

Ba 2+ + SO4 2- → BaSO4

Sr 2+ + SO4 2- → SrSO4

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Также осадки белого цвета образуются при взаимодействии солей кальция, стронция и бария с сульфитами и фосфатами.

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Химические свойства

1.1. Щелочноземельные металлы реагируют с галогенами с образованием галогенидов при нагревании.

1.2. Щелочноземельные металлы реагируют при нагревании с серой и фосфором с образованием сульфидов и фосфоридов.

Ca + S → CaS

Кальций взаимодействует с фосфором с образованием фосфидов:

1.4. С азотом магний взаимодействует при комнатной температуре с образованием нитрида:

Остальные щелочноземельные металлы реагируют с азотом при нагревании.

1.5. Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов.

Ca + 2C → CaC2

Бериллий реагирует с углеродом при нагревании с образованием карбида — метанида:

2Be + C → Be2C

1.6. Бериллий сгорает на воздухе при температуре около 900°С:

2Be + O2 → 2BeO

Магний горит на воздухе при 650°С с выделением большого количества света. При этом образуются оксиды и нитриды:

2Mg + O2 → 2MgO

Бериллий с чем взаимодействует. Смотреть фото Бериллий с чем взаимодействует. Смотреть картинку Бериллий с чем взаимодействует. Картинка про Бериллий с чем взаимодействует. Фото Бериллий с чем взаимодействует

Щелочноземельные металлы горят на воздухе при температуре около 500°С, в результате также образуются оксиды и нитриды.

Видеоопыт : горение кальция на воздухе можно посмотреть здесь.

2. Щелочноземельные металлы взаимодействуют со сложными веществами:

2 Ca 0 + 2 H2 + O = 2 Ca + ( OH)2 + H2 0

2.2. Щелочноземельные металлы взаимодействуют с минеральными кислотамисоляной, фосфорной, разбавленной серной кислотой и др.). При этом образуются соль и водород.

2Mg + 2HCl → MgCl2 + H2

2.3. При взаимодействии щелочноземельных металлов с концентрированной серной кислотой образуется сера.

При взаимодействии щелочноземельных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

2.5. Щелочноземельные металлы могут восстанавливать некоторые неметаллы (кремний, бор, углерод) из оксидов.

2Ca + SiO2 → 2CaO + Si

2Mg + CO2 → 2MgO + C

Ca + CuCl2 → CaCl2 + Cu

Оксиды щелочноземельных металлов

Способы получения

1. О ксиды щелочноземельных металлов можно получить из простых веществ — окислением металлов кислородом :

2Ca + O2 → 2CaO

3. Оксиды магния и бериллия можно получить термическим разложением гидроксидов :

Химические свойства

1. Оксиды кальция, стронция, бария и магния взаимодействуют с кислотными и амфотерными оксидами :

2. Оксиды щелочноземельных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

CaO + 2HCl → CaCl2 + H2O

3. Оксиды кальция, стронция и бария активно взаимодействуют с водой с образованием щелочей.

CaO + H2O → 2Ca(OH)2

Оксид магния реагирует с водой при нагревании:

MgO + H2O → Mg(OH)2

Оксид бериллия не взаимодействует с водой.

4. Оксид бериллия взаимодействует с щелочами и основными оксидами.

При взаимодействии оксида бериллия с щелочами в расплаве или с основными оксидами образуются соли-бериллаты.

При взаимодействии оксида бериллия с щелочами в растворе образуются комплексные соли.

Гидроксиды щелочноземельных металлов

Способы получения

Оксид магния взаимодействует с водой только при нагревании:

2. Гидроксиды кальция, стронция и бария получают при взаимодействии соответствующих металлов с водой.

Магний взаимодействует с водой только при кипячении:

Химические свойства

1. Гидроксиды кальция, стронция и бария реагируют с всеми кислотами (и сильными, и слабыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Гидроксид магния взаимодействует только с сильными кислотами.

в растворе образуется комплексная соль — тетрагидроксоалюминат:

4. Гидроксиды кальция, стронция и бария взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.

Например : гидроксид кальция реагирует с гидрокарбонатом кальция с образованием карбоната кальция:

5. Гидроксиды кальция, стронция и бария взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода). Взаимодействие щелочей с неметаллами подробно рассмотрено в статье про щелочные металлы.

В растворе образуются комплексная соль и водород:

7. Гидроксиды кальция, стронция и бария вступают в обменные реакции с растворимыми солями. Как правило, с этими гидроксидами реагируют растворимые соли тяжелых металлов (в ряду активности расположены правее алюминия), а также растворимые карбонаты, сульфиты, силикаты, и, для гидроксидов стронция и бария — растворимые сульфаты.

Также с гидроксидами кальция, стронция и бария взаимодействуют соли аммония.

8. Гидроксид кальция разлагается при нагревании до 580 о С, гидроксиды магния и бериллия разлагаются при нагревании:

Ba(OH)2 ↔ Ba 2+ + 2OH —

Гидроксид магния — нерастворимое основание. Гидроксид бериллия проявляет амфотерные свойства.

При взаимодействии гидроксида бериллия с избытком раствора щелочи образуется комплексная соль:

Соли щелочноземельных металлов

Нитраты щелочноземельных металлов

Нитраты кальция, стронция и бария при нагревании разлагаются на нитриты и кислород. Исключениенитрат магния. Он разлагается на оксид магния, оксид азота (IV) и кислород.

Карбонаты щелочноземельных металлов

1. Карбонаты щелочноземельных металлов при нагревании разлагаются на оксид и углекислый газ.

2. Карбонаты щелочноземельных металлов под действием воды и углекислого газа превращаются в растворимые в воде гидрокарбонаты.

3. Карбонаты щелочноземельных металлов взаимодействуют с более сильными кислотами с образованием новой соли, углекислого газа и воды.

Более сильные кислоты вытесняют менее сильные из солей.

4. Менее летучие оксиды вытесняют углекислый газ из карбонатов при сплавлении. К менее летучим, чем углекислый газ, оксидам относятся твердые оксиды — оксид кремния (IV), оксиды амфотерных металлов.

Менее летучие оксиды вытесняют более летучие оксиды из солей при сплавлении.

Жесткость воды

Постоянная и временная жесткость

Жесткость воды — это характеристика воды, обусловленная содержанием в ней растворенных солей щелочноземельных металлов, в основном кальция и магния (солей жесткости).

Временная (карбонатная) жесткость обусловлена присутствием гидрокарбонатов кальция Ca(HCO3)2 и магния Mg(HCO3)2 в воде.

Постоянная (некарбонатная) жесткость обусловлена присутствием солей, не выделяющихся при кипячении из раствора: хлоридов (CaCl2) и сульфатов (MgSO4) кальция и магния.

Способы устранения жесткости

Существуют химические и физические способы устранения жесткости. Химические способы устранения временной жесткости:

1. Кипячение. При кипячении гидрокарбонаты кальция и магния распадаются на нерастворимые карбонаты, углекислый газ и воду:

2. Добавление извести (гидроксида кальция). При добавлении щелочи растворимые гидрокарбонаты переходят в нерастворимые карбонаты:

Химические способы устранения постоянной жесткостиреакции ионного обмена, которые позволяют осадить ионы кальция и магния из раствора:

1. Добавление соды (карбоната натрия). Карбонат натрия связывает ионы кальция и магния в нерастворимые карбонаты:

CaCl2 + Na2CO3 → CaCO3↓+ 2NaCl

2. Добавление фосфатов. Фосфаты также связывают ионы кальция и магния:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *