За счет чего при тепловой обработке овощи размягчаются
Размягчение продуктов
Для размягчения структуры пищевых продуктов в технологии используют разные способы и режимы тепловой обработки. В зависимости от вида продукта в нем при нагреве происходит сложный комплекс физико-химических изменений, приводящий к изменению нативной структуры.
При тепловой обработке продуктов животного происхождения изменение структуры и свойств мышечной ткани обусловлено, в основном, изменением белков.
При тепловой обработке мясопродуктов, птицы, рыбы уже при 40 °С отмечается денатурация белков — потеря ими биологических (жизненных) свойств. В результате этого происходит агрегирование белковых веществ и свертывание белка, что приводит к значительному уплотнению мышечных волокон, возрастанию механической прочности мышечной ткани и уменьшению ее объема…. Для размягчения структуры пищевых продуктов в технологии используют разные способы и режимы тепловой обработки. В зависимости от вида продукта в нем при нагреве происходит сложный комплекс физико-химических изменений, приводящий к изменению нативной структуры.
При тепловой обработке продуктов животного происхождения изменение структуры и свойств мышечной ткани обусловлено, в основном, изменением белков.
При тепловой обработке мясопродуктов, птицы, рыбы уже при 40 °С отмечается денатурация белков — потеря ими биологических (жизненных) свойств. В результате этого происходит агрегирование белковых веществ и свертывание белка, что приводит к значительному уплотнению мышечных волокон, возрастанию механической прочности мышечной ткани и уменьшению ее объема.
Одновременно с изменениями мышечных белков идет денатурация и деструкция соединительнотканых белков коллагена и эластина. Именно эти изменения имеют решающее значение для размягчения мясопродуктов при тепловой обработке.
Тепловая денатурация коллагена сопровождается нарушением специфической конфигурации полипептидных цепей его молекулы. В результате разрушения внутри- и межмолекулярных связей коллагеновые волокна сначала начинают набухать, а дальнейшее тепловое воздействие приводит к их деструкции (распаду). В результате этого коллаген переходит в глютин: в макромолекуле коллагена разрушаются все поперечные связи между полипептидными цепями. Полный гидролиз коллагена происходит при нагреве до 126 °С в течение 3 ч.
Образовавшийся глютин в отличие от коллагена не только хорошо набухает, но при температуре 40°С и выше неограниченно растворяется в воде. Растворы плотина при охлаждении образуют студни, которые при концентрации 2,5% хорошо сохраняют форму. Глютин в отличие от коллагена хорошо переваривается в организме под действием ферментов желудочно-кишечного тракта.
Деструкция коллагена ослабляет механическую прочность соединительной ткани и является причиной размягчения мяса с высоким ее содержанием. Однако чрезмерный распад коллагена приводит к ухудшению качества продуктов. Такой продукт плохо сохраняет форму, его трудно делить на порции, так как ткани начинают распадаться на отдельные пучки. Поэтому для снижения механической прочности тканей мяса достаточно, чтобы 20-45% коллагена перешло в глютин.
Для размягчения растительных тканей также используют разные способы тепловой обработки. Степень размягчения овощей и плодов оценивают по механической прочности их тканей. Так, механическая прочность сырого картофеля составляет около 13×105 Па, а отварного — 0,5×105 Па. Размягчение овощей и плодов при тепловой обработке обусловлено частичной деструкцией клеточных стенок, протопектина, гемицеллюлоз и структурного белка экстенсина. Целлюлоза даже при очень длительной тепловой обработке не разрушается.
В процессе тепловой обработки протопектин распадается, в результате чего образуются продукты с различной растворимостью, в том числе пектин. Параллельно с этим происходит деструкция гемицеллюлоз (но при более высоких температурах, чем протопектина) тоже с образованием растворимых продуктов. В результате прочность клеточных стенок уменьшается в зависимости от вида продукта в 5-10 раз.
Структурный белок эксенсин в некотором отношении напоминает коллаген и выполняет аналогичные функции в овощах и плодах. Как и коллаген, он отличается высоким содержанием оксипролина. При тепловой обработке экстенсии частично разрушается с образованием растворимых продуктов, что также приводит к снижению механической прочности тканей овощей.
Размягчение ядер круп и семян бобовых при варке обусловлено тем же, что и размягчение овощей и плодов, — распадом клеточных стенок. Считают, что ядра круп в процессе варки размягчаются в основном вследствие разрушения гемицеллюлоз и набухания клеточных стенок, а семена бобовых, кроме того, — за счет протопектина и экстенсина.
Изменение консистенции ядер круп и бобовых обусловлено еще и другими процессами — клейстеризацией крахмала, изменением агрегатного состояния внутриклеточных белков в результате денатурации и др. Для ускорения размягчения круп и бобовых применяют их замачивание, в результате которого происходит набухание белков и гемицеллюлоз
Процессы, происходящие при тепловой обработке овощей
При тепловой обработке овощей происходят глубокие физико-химические изменения. Некоторые из них играют положительную роль (размягчение овощей, клейстеризация крахмала и др.), улучшают внешний вид блюд (образование румяной корочки при жарке картофеля); другие процессы снижают пищевую ценность (потери витаминов, минеральных веществ
и др.), вызывают изменение цвета и т.д. Кулинар должен уметь управлять происходящими процессами.
Размягчение овощей при тепловой обработке. Паренхимная ткань состоит из клеток, покрытых клеточными оболочками. Отдельные клетки соединены друг с другом срединными пластинками. Оболочки клеток и срединные пластинки придают овощам механическую прочность. В состав клеточных стенок входят: клетчатка (целлюлоза), полуклетчатка (гемицеллюлозы), протопектин, пектин и соединительнотканный белок экстенсин. При этом в средних пластинках преобладает протопектин.
При тепловой обработке клетчатка практически не изменяется. Волокна гемицеллюлоз набухают, но сохраняются. Размягчение ткани обусловлено распадом протопектина и экстенсина.
Протопектин — полимер пектина — имеет сложную разветвленную структуру. Главные цепи его молекул состоят из остатков галактуроновых и полигалактуроновых кислот и сахара — рамнозы. Цепи галактуроновых кислот соединены друг с другом с помощью различных связей (водородных, эфирных, ангидридных, солевых мостиков), среди которых преобладают солевые мостики из двухвалентных ионов кальция и магния. При нагревании в срединных пластинках происходит ионообменная реакция: ионы кальция и магния заменяются одновалентными ионами натрия и калия.
… ГК – ГК – ГК … … ГК – ГК – ГК …
СОО СООNa
Ca+2Na + (K) +Ca ++
COO COONa
… ГК – ГК – ГК … … ГК – ГК – ГК …
При этом связь между отдельными цепями галактуроновых кислот разрушается. Протопектин распадается, образуется
растворимый в воде пектин, и овощная ткань размягчается Реакция эта обратима. Чтобы она проходила, в правую сторону, необходимо удалять ионы кальция из сферы реакции. В растительных продуктах содержатся фитин и ряд других веществ, связывающих кальций. Однако связывание ионов кальция (магния) не происходит в кислой среде, поэтому размягчение овощей замедляется. В жесткой воде, содержащей ионы кальция и магния, этот процесс также будет проходить медленно. При повышении температуры размягчение овощей ускоряется.
В разных овощах скорость распада протопектина неодинакова. Поэтому варить можно все овощи, а жарить только те, в которых протопектин успевает превратиться в пектин, пока еще не вся влага испарилась (картофель, кабачки, помидоры, тыкву). У моркови, репы, брюквы и некоторых других овощей протопектин настолько устойчив, что они начинают подгорать раньше, чем достигнут кулинарной готовности.
Размягчение овощей связано не только с распадом протопектина, но и с гидролизом экстенсина. Содержание его при тепловой обработке овощей значительно снижается. Так, по достижении кулинарной готовности в свекле распадается около 70% экстенсина, в петрушке — примерно 40%.
Изменение крахмала. При тепловой обработке картофеля крахмальные зерна (рис. III.9), находящиеся внутри клеток, клейстеризуются за счет клеточного сока. При этом клетки не разрушаются и клейстер остается внутри них. В горячем картофеле связь между отдельными клетками ослаблена вследствие распада протопектина и экстенсина, поэтому при протирании они легко отделяются друг от друга, клетки остаются целыми, клейстер не вытекает, и пюре получается пышным.
При охлаждении связь между клетками частично восстанавливается, они с большим трудом отделяются друг от друга, оболочки их при протирании рвутся, клейстер вытекает, и пюре получается клейким.
При жарке картофеля и других крахмалосодержащих овощей поверхность нарезанных кусочков быстро обезвоживается, температура в ней поднимается выше 120°С, при этом крахмал
Рис. III.9. Крахмальные зерна в картофеле:
1 — сыром; 2 — вареном; 3 — протертом после охлаждения
расщепляется с образованием пиродекстринов, имеющих коричневый цвет, и продукт покрывается румяной корочкой.
Изменение окраски овощей при тепловой обработке. Различную окраску овощей обусловливают пигменты (красящие вещества). При тепловой обработке окраска многих овощей изменяется.
Окраску свеклы обусловливают пигменты — бетанины (красные пигменты) и бетаксантины (желтые пигменты). От содержания и соотношения этих пигментов зависят оттенки окраски корнеплодов. Желтые пигменты почти полностью разрушаются при варке свеклы, а красные частично (12—13%) переходят в отвар, частично гидролизуются. Всего при варке разрушается около 50% бетанинов, вследствие чего окраска корнеплодов становится менее интенсивной. Степень изменения окраски свеклы зависит от ряда факторов: температуры нагревания, концентрации бетанина, рН среды, контакта с кислородом воздуха, присутствия в варочной среде ионов металлов и др. Чем выше температура нагревания, тем быстрее разрушается красный пигмент. Чем выше концентрация бетанина, тем лучше он сохраняется. Поэтому свеклу рекомендуется варить в кожуре или тушить с небольшим количеством жидкости. В кислой среде бетанин более устойчив, поэтому при варке или тушении свеклы добавляют уксус.
Овощи с белой окраской (картофель, капуста белокочанная, лук репчатый и др.) при тепловой обработке приобретают желтоватый оттенок. Это объясняется тем, что в них содержатся фенольные соединения — флавоноиды, которые образуют с сахарами гликозиды. При тепловой обработке гликозиды гидролизуются с выделением агликона, имеющего желтую окраску.
Оранжевая и красная окраска овощей обусловлена присутствием пигментов каротиноидов: каротинов — в моркови, редисе; ликопинов — в томатах; виолаксантина — в тыкве. Каротиноиды устойчивы при тепловой обработке. Они не растворимы в воде, но хорошо растворимы в жирах, на этом основан процесс извлечения их жиром при пассеровании моркови, томатов.
Зеленую окраску овощам придает пигмент хлорофилл. Он находится в хлоропластах, заключенных в цитоплазму. При тепловой обработке белки цитоплазмы свертываются, хлоропласты освобождаются и кислоты клеточного сока взаимодействуют с хлорофиллом. В результате образуется феофитин — вещество бурого цвета. Для сохранения зеленого цвета овощей следует соблюдать ряд правил:
* варить их в большом количестве воды для уменьшения концентрации кислот;
* не закрывать посуду крышкой, чтобы облегчить удаление с паром летучих кислот;
* уменьшать время варки овощей, погружая их в кипящую жидкость и не переваривая.
При наличии в варочной среде ионов меди хлорофилл приобретает ярко-зеленую окраску; ионов железа — бурую; ионов олова и алюминия — серую.
При нагревании в щелочной среде хлорофилл, омыляясь, образует хлорофиллин — вещество ярко-зеленого цвета. На этом свойстве хлорофилла основано получение зеленого красителя: любую зелень (ботву, зелень петрушки и др.) измельчают, варят с добавлением питьевой соды и отжимают через ткань хлорофиллиновую пасту.
Изменение витаминной активности в овощах. В процессе тепловой обработки витамины претерпевают значительные изменения.
Витамин С. Овощи являются основным источником витамина С в питании человека. Он хорошо растворим в воде и очень неустойчив при тепловой обработке. Содержится в клетках овощей в трех формах: восстановленной (аскорбиновая кислота), окисленной (дегидроаскорбиновая кислота) и связанной (аскорбиген). Восстановленная и окисленная формы витамина С могут легко переходить одна в другую под действием ферментов (аскорбиназы — в окисленную форму, аскорбинредуктазы — в восстановленную форму). Дегидроаскорбиновая кислота по биологической ценности не уступает аскорбиновой, но гораздо легче разрушается при тепловой обработке. Поэтому при кулинарной обработке стараются инактивировать аскорбиназу, в частности, погружением овощей в кипящую воду.
Окисление витамина С происходит в присутствии кислорода. Интенсивность процесса зависит от температуры нагрева овощей и продолжительности тепловой обработки. Для уменьшения контакта с кислородом овощи варят при закрытой крышке (кроме овощей с зеленой окраской), объем емкости должен соответствовать массе отвариваемых овощей, в случае выкипания нельзя доливать холодную некипяченую воду. Чем быстрее прогреваются овощи при варке, тем меньше разрушается аскорбиновая кислота. Так, при погружении картофеля в холодную воду (при варке) разрушается 35% витамина С, в горячую лишь 7%. Чем длительнее нагрев, тем выше степень окисления витамина С. Поэтому не допускается переваривание продуктов, длительное хранение пищи, нежелателен повторный разогрев готовых блюд.
Ионы металлов, попадающие в варочную среду с водопроводной водой и со стенок посуды, являются катализаторами окисления витамина С. Наибольшим каталитическим действием обладают ионы меди. В кислой среде это действие проявляется в меньшей степени, поэтому нельзя добавлять соду для ускорения развариваемости овощей.
Некоторые вещества, содержащиеся в пищевых продуктах, переходят в отвар и оказывают стабилизирующее действие на витамин С. К таким веществам относятся белки, аминокислоты, крахмал, витамины — А, Е, В1, пигменты — флавоны, антоцианы, каротиноиды. Например, при варке картофеля в воде потери витамина С составляют около 30%, и при варке в мясном бульоне витамин С практически полностью сохраняется.
Чем больше общее количество аскорбиновой кислоты в продукте, тем лучше сохраняется С-витаминная активность. Этим объясняется тот факт, что в картофеле и капусте витамин С в процессе варки сохраняется лучше осенью, чем весной. Например, при варке неочищенного картофеля осенью степень разрушения витамина С не превышает 10%, весной достигает 25%.
Во время варки аскорбиновая кислота не только разрушается, но и частично переходит в отвар. Поэтому овощные отвары рекомендуется использовать при приготовлении супов и соусов. Для уменьшения потерь витамина С из продуктов желательно не промывать квашеную капусту, избегать длительного хранения очищенных овощей в воде и т.д.
При жарке овощей потери витамина С меньше, так как слой жира на поверхности продукта уменьшает контакт с кислородом воздуха.
Большие потери витамина С происходят, когда продукты подвергают неоднократным тепловым воздействиям, протирают, взбивают (при изготовлении овощных котлет, запеканок, суфле). Так, в готовых картофельных котлетах остается аскорбиновой кислоты всего 5—7% количества ее в сыром картофеле.
Витамины группы В. При варке они частично переходят в отвар, частично разрушаются. Менее всего устойчив к нагреванию витамин В6. При варке шпината разрушается около 40% его, картофеля — 27—28%.
Тиамина и рибофлавина разрушается при варке овощей около 20%, примерно 40% остатка их переходит в отвар.
Чем больше воды для варки, тем меньше витаминов остается в продукте. Жарка и тушение овощей вызывают разрушение около 40% витамина Вг
Изменение массы овощей. В процессе варки масса овощей изменяется в результате двух противоположных процессов:
* вследствие набухания гемицеллюлозы и крахмала масса увеличивается;
* после сливания отвара часть влаги испаряется, что приводит к уменьшению массы.
Потери массы зависят и от особенностей строения овощей.
Потери влаги определяют выход готовых изделий и поэтому предельно допустимые потери массы регламентируются нормативными документами.
По размеру потерь массы при варке все овощи можно разделить на две группы: первая — потери до 10% (кольраби, цветная капуста, капуста белокочанная, репа, петрушка, свекла, морковь, картофель), вторая — потери до 50% (шпинат, щавель, ботва свеклы, лук репчатый, кабачки, патиссоны).
Не трудно заметить, что наибольшие потери массы у листовых овощей и плодовых: первые имеют большую поверхность, вторые содержат в паренхимной ткани много воздушных включений в виде мелких пузырьков. Воздух, содержащийся в пузырьках, при нагревании расширяется и при температуре 72—75°С механически разрушает клеточные стенки, вследствие чего из тканей начинает интенсивно выделяться влага.
При варке неочищенных овощей растворимые вещества практически полностью сохраняются. При варке очищенных корнеплодов (моркови, свеклы и др.) в воду переходит 20— 25% содержащихся в них веществ, главным образом сахаров и минеральных веществ. Значительно снижается содержание соединений калия, натрия, магния и фосфора. При добавлении поваренной соли потери ряда минеральных веществ уменьшаются, поэтому овощи (за исключением моркови и свеклы, содержащих значительное количество сахаров) закладывают в подсоленную воду.
При варке потери растворимых веществ картофеля примерно в два раза меньше, чем корнеплодов. Это объясняется тем, что часть растворимых веществ адсорбируется клейстеризованным крахмалом.
Потери растворимых веществ при варке капусты достигают 1/3 всех сухих веществ.
Нормы потерь массы при припускании большинства полуфабрикатов из овощей не отличаются от норм потерь массы их при варке в воде (морковь, свекла, репа, тыква нарезанные). Количество растворимых веществ, которое переходит в жидкость при припускании (тушении), не относят к потерям, так как припущенные и тушеные овощи отпускают вместе с жидкостью.
При жарке масса овощей уменьшается в основном вследствие испарения влаги. Потери влаги зависят от характера ее связи со структурными элементами овощной ткани, поверхности изделия, температуры и продолжительности жарки и т.д. Уменьшение массы овощей при жарке колеблется от 17 до 60% и зависит от вида овощей, размера и формы нарезки, способа жарки. Количество испарившейся влаги несколько больше, чем потери массы, так как они частично компенсируются поглощенным жиром. Потери растворимых веществ при жарке овощей очень малы по сравнению с потерями их при варке и припускании и практически не влияют на уменьшение массы. Влияние различных факторов на потери массы овощей при жарке рассмотрим на примере картофеля. При жарке масса сырого картофеля уменьшается на 31%, а предварительно сваренного — на 17%. Это объясняется тем, что при варке картофеля влага связывается крахмалом в процессе его клейстеризации, вследствие чего, испарение ее замедляется, увеличивается поглощение жира.
При жарке картофеля (сырой, нарезанный брусочками) основным способом теряется 31% его массы, а при жарке во фритюре — 50%. Это объясняется тем, что при обжаривании во фритюре испарение влаги происходит одновременно по всей поверхности.
Специфические вкус и аромат жареным овощам придают летучие и растворимые вещества, образующиеся в корочке процессе карамелизации, реакции меланоидинообразования и других изменений белков, жиров и углеводов.
Изменения, происходящие при тепловой обработке овощей
В зависимости от вида тепловой обработки различают отварные, припущенные, жареные, тушеные, запеченные овощные блюда. Овощи, предназначенные для приготовления блюд, после механической кулинарной обработки сразу подвергают тепловой обработке, так как при хранении они становятся вялыми, в них быстро разрушается витамин С. При тепловой обработке овощей с ними происходит ряд изменений.
1. В сырых овощах клетки растительной ткани связаны между собой склеивающим веществом — протопектином. При тепловой обработке протопектин переходит в растворимое вещество — пектин, поэтому связь между клетками ослабляется и овощи размягчаются. Продолжительность тепловой обработки овощей зависит от стойкости протопектина. В кислой среде овощи размягчаются плохо, так как процесс перехода протопектина в пектин замедляется.
2. Крахмал, содержащийся в овощах, клейстеризуется. Крахмальные зерна при температуре 55. 70°С впитывают воду, имеющуюся в овощах, и образуют студенистую массу — клейстер.
6. Различная окраска овощей обусловлена наличием в них пигментов (красящих веществ). Зеленый цвет овощей (щавель, шпинат, салат, зеленый горошек и др.) обусловлен содержанием пигмента хлорофилла. При тепловой обработке органические кислоты клеточного сока вступают в реакцию с хлорофиллом, образуя новое соединение бурого цвета. Зеленые овощи, содержащие летучие органические кислоты, для сохранения цвета кладут в бурно кипящую воду, при этом кислоты улетучиваются вместе с парами воды и цвет овощей не изменяется. Желтый, оранжевый, красный цвета овощей (морковь, репа, тыква, помидоры, красный перец) обусловлены содержанием группы пигментов — каротиноидов. Они устойчивы к действию тепла, кислот, щелочей и не изменяют цвет при тепловой обработке. Каротиноиды нерастворимы в воде, но растворяются в жирах, поэтому при пассеровании овощей пигменты переходят в жир, окрашивая его в оранжевый цвет. В свекле содержатся красящие вещества — антоцианы, которые представляют собой два пигмента — пурпурный (бетанин) и желтый.
Пурпурный пигмент при тепловой обработке легко разрушается, а желтый к нагреванию более устойчив. Антоцианы свеклы хорошо сохраняются в кислой среде.
Поэтому при тепловой обработке свеклы добавляют уксус или лимонную кислоту. Бело-желтый цвет овощей обусловлен содержанием пигментов — флавонов, которые при гидролизе приобретают желтую окраску. Поэтому при варке картофеля, капусты они желтеют. Флавоны при взаимодействии с солями железа дают темную окраску.
7. При тепловой обработке масса овощей уменьшается. Изменения в массе зависят от вида овощей, способа их тепловой обработки и формы нарезки.
8. Витамины (за исключением витамина С) устойчивы к тепловой обработке и почти не изменяются. Часть водорастворимых витаминов при варке переходит в отвар, поэтому отвары овощей рекомендуется использовать для приготовления супов, соусов. Витамин С — аскорбиновая кислота — менее устойчив и легко разрушается при тепловой обработке.
В целях его сохранения необходимо: не допускать длительного хранения очищенных и нарезанных овощей; использовать посуду из неокисляющегося металла; объем посуды должен соответствовать количеству порций; при варке овощи закладывать в кипящую воду; варить овощи в посуде с закрытой крышкой, чтобы не было доступа кислорода воздуха; во время приготовления редко перемешивать овощи; соблюдать сроки тепловой обработки; не допускать длительного хранения готовых блюд в горячем состоянии. Значительно лучше витамин сохраняется при варке на пару и при жарке, так как жир предохраняет овощи от соприкосновения с кислородом воздуха. Сохранению витамина «С» при тепловой обработке способствует наличие кислоты в овощах.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.