User hash что это
Безопасный метод авторизации на PHP
Давайте посмотрим вокруг: форумы, интернет магазины, гостевые книги и т.д. используют регистрацию и последующую авторизацию пользователей. Можно даже сказать, что это почти необходимая функция каждого сайта (только если это не домашняя страничка Васи Пупкина или не визитная карточка, какой-нибудь небольшой компании). Сегодня я хочу поделиться со всеми новичками информацией, о том, как лучше это все реализовать.
Модель авторизации:
Клиент
Сервер MySQL
При регистрации в базу данных записывается логин пользователя и пароль(в двойном md5 шифровании)
При авторизация, сравниваеться логин и пароль, если они верны, то генерируеться случайная строка, которая хешируеться и добавляеться в БД в строку user_hash. Также записываеться IP адрес пользователя(но это у нас будет опциональным, так как кто-то сидит через Proxy, а у кого-то IP динамический. тут уже пользователь сам будет выбирать безопасность или удобство). В куки пользователя мы записываем его уникальный индетификатор и сгенерированный hash.
Почему надо хранить в куках хеш случайно сгенерированной строки, а не хеш пароля?
1. Из-за невнимательности программиста, во всей системе могут быть дырки, воспользовавшийсь этими дырками, злоумышленик может вытащить хеш пароля из БД и подставить его в свои куки, тем самым получить доступ к закрытым данным. В нашем же случае, двойной хеш пароля не чем не сможет помочь хакеру, так как расшифровать он его не сможет(теоретически это возможно, но на это он потратит не один месяц, а может быть и год) а воспользоваться этим хешем ему негде, ведь у нас при авторизации свой уникальный хеш прикрепленный к IP пользователя.
2. Если злоумышленик вытащит трояном у пользователя уникальный хеш, воспользовать им он также не сможет(разве если только, пользователь решил принебречь своей безопастностью и выключил привязку к IP при авторизации).
Реализация
Структура таблицы `users` в базе данных ‘testtable’
register.php
login.php
check.php
logout.php
Для защиты формы логина от перебора, можно использовать капчу или временную задержку на повторную авторизацию.
Автор: http://jiexaspb.habrahabr.ru/. Адаптация под PHP 5.5 и MySQL 5.7 KDG.
Куки с флагом HttpOnly не видны браузерному javascript-коду, а отправляются только на сервер. На практике у вас никогда нет необходимости получать их содержимое в javascript. А вот злоумышленнику, нашедшему XSS — а XSS так или иначе когда-нибудь где-нибудь найдется — отсутствие HttpOnly на авторизационных куках доставит много радости.
Хеширование пароля на PHP
Давайте, например, найдем хеш какой-нибудь строки:
Сейчас нам необходимо переделать нашу регистрацию и нашу авторизацию. Для начала я бы советовал очистить таблицу с юзерами, так как там сейчас хранятся пароли в открытом виде, а должны хранится их хеши. Затем при тестировании регистрации таблица заполнится данными в новом формате.
Давайте теперь поправим нашу регистрацию так, чтобы при сохранении нового пользователя в базу добавлялся не пароль, а его хеш.
Описанная правка будет представлять собой что-то такое:
Внесем аналогичные правки в авторизацию:
Внесите изменения в регистрацию с учетом хеширования, зарегистрируйте пару новых пользователей, убедитесь, что в базу данных они добавились с хешированными паролями.
Внесите изменения в авторизацию с учетом хеширования, попробуйте авторизоваться под зарегистрированными ранее пользователями.
Добавляем соль в регистрацию
Речь идет о достаточно простых, популярных паролях.
Хеши достаточно сложных паролей таким образом не разгадать (попробуйте).
Можно, конечно, придумать более умный алгоритм проверки пароля на сложность, но есть другое решение.
То есть при регистрации вы будете делать что-то типа такого:
При этом соль будет разная для каждого пользователя, ее нужно будет генерировать случайным образом в момент регистрации.
Вот готовая функция, которая сделает это:
С помощью этой функции можно переписать наш код вот так:
Реализуйте описанную выше регистрацию с соленым паролем.
Добавляем соль в авторизацию
Теперь нам необходимо поменять авторизацию. Здесь уже изменения будут более существенными.
Уже не получится проверить правильность пары логин-пароль сразу же, одним запросом. Почему: потому что, чтобы проверить пароль, надо получить его соленый хеш, а соль хранится в базе данных и уникальная для каждого логина.
Давайте добавим проверку пароля:
Реализуйте описанную выше авторизацию с соленым паролем. Попробуйте зарегистрируйтесь, авторизуйтесь, убедитесь, что все работает.
Используем функцию password_hash
На самом деле функция md5 и соление пароля с ее помощью считается устаревшим. Мы изучали ее, чтобы вы поняли дальнейший материал, а также потому, что вы можете столкнуться с этим, работая с чужими проектами.
Попробуйте несколько раз запустите этот код:
Давайте посмотрим на примере:
То есть получится, что в базе данных в поле password мы будем хранить соленый пароль вместе с его солью. При этом хешированный пароль будет иметь большую длину. Поэтому в базе данных нам нужно исправить размер поля с паролем и установить ее в 60 символов.
Теперь давайте поправим код регистрации. Вот то, что есть сейчас:
С помощью password_hash мы сократим это до:
Аналогичным образом подправится код авторизации:
Переделайте вашу авторизацию и регистрацию на новые изученные функции.
В настоящее время алгоритмом по умолчанию будет алгоритм BCrypt (то есть аналог md5, но мощнее), который своим результатом возвращает строку соль+хеш размером 60 символов.
В таком случае изменения в вашем коде произойдут автоматически при переходе на новую версию PHP.
Чудеса хеширования
Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, защиту файлов и даже обнаружение зловредного ПО. Как они работают и где применяются?
Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, проверку целостности данных, защиту файлов и даже обнаружение зловредного ПО. Существует масса алгоритмов хеширования, отличающихся криптостойкостью, сложностью, разрядностью и другими свойствами. Считается, что идея хеширования принадлежит сотруднику IBM, появилась около 50 лет назад и с тех пор не претерпела принципиальных изменений. Зато в наши дни хеширование обрело массу новых свойств и используется в очень многих областях информационных технологий.
Что такое хеш?
Если коротко, то криптографическая хеш-функция, чаще называемая просто хешем, — это математический алгоритм, преобразовывающий произвольный массив данных в состоящую из букв и цифр строку фиксированной длины. Причем при условии использования того же типа хеша длина эта будет оставаться неизменной, вне зависимости от объема вводных данных. Криптостойкой хеш-функция может быть только в том случае, если выполняются главные требования: стойкость к восстановлению хешируемых данных и стойкость к коллизиям, то есть образованию из двух разных массивов данных двух одинаковых значений хеша. Интересно, что под данные требования формально не подпадает ни один из существующих алгоритмов, поскольку нахождение обратного хешу значения — вопрос лишь вычислительных мощностей. По факту же в случае с некоторыми особо продвинутыми алгоритмами этот процесс может занимать чудовищно много времени.
Как работает хеш?
Например, мое имя — Brian — после преобразования хеш-функцией SHA-1 (одной из самых распространенных наряду с MD5 и SHA-2) при помощи онлайн-генератора будет выглядеть так: 75c450c3f963befb912ee79f0b63e563652780f0. Как вам скажет, наверное, любой другой Брайан, данное имя нередко пишут с ошибкой, что в итоге превращает его в слово brain (мозг). Это настолько частая опечатка, что однажды я даже получил настоящие водительские права, на которых вместо моего имени красовалось Brain Donohue. Впрочем, это уже другая история. Так вот, если снова воспользоваться алгоритмом SHA-1, то слово Brain трансформируется в строку 97fb724268c2de1e6432d3816239463a6aaf8450. Как видите, результаты значительно отличаются друг от друга, даже несмотря на то, что разница между моим именем и названием органа центральной нервной системы заключается лишь в последовательности написания двух гласных. Более того, если я преобразую тем же алгоритмом собственное имя, но написанное уже со строчной буквы, то результат все равно не будет иметь ничего общего с двумя предыдущими: 760e7dab2836853c63805033e514668301fa9c47.
Впрочем, кое-что общее у них все же есть: каждая строка имеет длину ровно 40 символов. Казалось бы, ничего удивительного, ведь все введенные мною слова также имели одинаковую длину — 5 букв. Однако если вы захешируете весь предыдущий абзац целиком, то все равно получите последовательность, состоящую ровно из 40 символов: c5e7346089419bb4ab47aaa61ef3755d122826e2. То есть 1128 символов, включая пробелы, были ужаты до строки той же длины, что и пятибуквенное слово. То же самое произойдет даже с полным собранием сочинений Уильяма Шекспира: на выходе вы получите строку из 40 букв и цифр. При всем этом не может существовать двух разных массивов данных, которые преобразовывались бы в одинаковый хеш.
Вот как это выглядит, если изобразить все вышесказанное в виде схемы:
Для чего используется хеш?
Отличный вопрос. Однако ответ не так прост, поскольку криптохеши используются для огромного количества вещей.
Для нас с вами, простых пользователей, наиболее распространенная область применения хеширования — хранение паролей. К примеру, если вы забыли пароль к какому-либо онлайн-сервису, скорее всего, придется воспользоваться функцией восстановления пароля. В этом случае вы, впрочем, не получите свой старый пароль, поскольку онлайн-сервис на самом деле не хранит пользовательские пароли в виде обычного текста. Вместо этого он хранит их в виде хеш-значений. То есть даже сам сервис не может знать, как в действительности выглядит ваш пароль. Исключение составляют только те случаи, когда пароль очень прост и его хеш-значение широко известно в кругах взломщиков. Таким образом, если вы, воспользовавшись функцией восстановления, вдруг получили старый пароль в открытом виде, то можете быть уверены: используемый вами сервис не хеширует пользовательские пароли, что очень плохо.
Вы даже можете провести простой эксперимент: попробуйте при помощи специального сайта произвести преобразование какого-нибудь простого пароля вроде «123456» или «password» из их хеш-значений (созданных алгоритмом MD5) обратно в текст. Вероятность того, что в базе хешей найдутся данные о введенных вами простых паролях, очень высока. В моем случае хеши слов «brain» (8b373710bcf876edd91f281e50ed58ab) и «Brian» (4d236810821e8e83a025f2a83ea31820) успешно распознались, а вот хеш предыдущего абзаца — нет. Отличный пример, как раз для тех, кто все еще использует простые пароли.
Еще один пример, покруче. Не так давно по тематическим сайтам прокатилась новость о том, что популярный облачный сервис Dropbox заблокировал одного из своих пользователей за распространение контента, защищенного авторскими правами. Герой истории тут же написал об этом в твиттере, запустив волну негодования среди пользователей сервиса, ринувшихся обвинять Dropbox в том, что он якобы позволяет себе просматривать содержимое клиентских аккаунтов, хотя не имеет права этого делать.
Впрочем, необходимости в этом все равно не было. Дело в том, что владелец защищенного копирайтом контента имел на руках хеш-коды определенных аудио- и видеофайлов, запрещенных к распространению, и занес их в список блокируемых хешей. Когда пользователь предпринял попытку незаконно распространить некий контент, автоматические сканеры Dropbox засекли файлы, чьи хеши оказались в пресловутом списке, и заблокировали возможность их распространения.
Где еще можно использовать хеш-функции помимо систем хранения паролей и защиты медиафайлов? На самом деле задач, где используется хеширование, гораздо больше, чем я знаю и тем более могу описать в одной статье. Однако есть одна особенная область применения хешей, особо близкая нам как сотрудникам «Лаборатории Касперского»: хеширование широко используется для детектирования зловредных программ защитным ПО, в том числе и тем, что выпускается нашей компанией.
Как при помощи хеша ловить вирусы?
Примерно так же, как звукозаписывающие лейблы и кинопрокатные компании защищают свой контент, сообщество создает списки зловредов (многие из них доступны публично), а точнее, списки их хешей. Причем это может быть хеш не всего зловреда целиком, а лишь какого-либо его специфического и хорошо узнаваемого компонента. С одной стороны, это позволяет пользователю, обнаружившему подозрительный файл, тут же внести его хеш-код в одну из подобных открытых баз данных и проверить, не является ли файл вредоносным. С другой — то же самое может сделать и антивирусная программа, чей «движок» использует данный метод детектирования наряду с другими, более сложными.
Криптографические хеш-функции также могут использоваться для защиты от фальсификации передаваемой информации. Иными словами, вы можете удостовериться в том, что файл по пути куда-либо не претерпел никаких изменений, сравнив его хеши, снятые непосредственно до отправки и сразу после получения. Если данные были изменены даже всего на 1 байт, хеш-коды будут отличаться, как мы уже убедились в самом начале статьи. Недостаток такого подхода лишь в том, что криптографическое хеширование требует больше вычислительных мощностей или времени на вычисление, чем алгоритмы с отсутствием криптостойкости. Зато они в разы надежнее.
Кстати, в повседневной жизни мы, сами того не подозревая, иногда пользуемся простейшими хешами. Например, представьте, что вы совершаете переезд и упаковали все вещи по коробкам и ящикам. Погрузив их в грузовик, вы фиксируете количество багажных мест (то есть, по сути, количество коробок) и запоминаете это значение. По окончании выгрузки на новом месте, вместо того чтобы проверять наличие каждой коробки по списку, достаточно будет просто пересчитать их и сравнить получившееся значение с тем, что вы запомнили раньше. Если значения совпали, значит, ни одна коробка не потерялась.
Как надо хешировать пароли и как не надо
В очередной раз, когда мы заканчивали проводить аудит информационной безопасности веб-проекта, моя личная бочка с гневом переполнилась негодованием так, что оно перелилось через край в этот пост.
Постараюсь очень лаконично и быстро обрисовать ситуацию с хэшами.
Сразу определю какую задачу применения хешей буду рассматривать — аутентификация пользователей. Не токены восстановления паролей, не аутентификация запросов, не что-то еще. Это также не статья про защиту канала передачи данных, так что комментарии по challenge-response и SSL неуместны!
Матчасть (короткая)
Hash = хеш функция — (свертка) функция однозначного отображения строки (любой длины) на конечное множество (строку заданной длины).
Само число (строка) хеш — результат вычисления хеш-функции над данными.
Существуют криптографические и некриптографические (классифицируются отдельно, к ним относятся, например, контрольные суммы) хеш-функции.
Вникать в тонкости криптографии прикладному разработчику не обязательно, достаточно запомнить какие хэш-функции (алгоритмы по названию) можно сейчас использовать, а какие уже нет. MD5 — уже нельзя, коллеги, — используйте bcrypt/scrypt.
В веб-приложениях, в числе прочего, хеш-функции используются для безопасного хранения секретов (паролей) в базе данных.
Именно хэш-функция становится вашим последним оплотом, если злоумышленник смог свести нападение к локальной атаке на систему аутентификации. Про онлайн атаки (перебор паролей НТТР запросами), может быть, кто-то еще напишет позже.
Для выполнения первого требования нужно использовать стойкие в настоящее время (а не в 90х годах!) хеш-функции.
Для выполнения второго — к паролю перед хешированием добавляется случайная строка (соль). Таким образом, у двух пользователей с паролем «123456» будут разные соли «соль1» и «соль2», а соответственно и хеш-функции от «123456соль1» и «123456соль2» в базе тоже будут разные.
Теперь немного про систему хранения — и соль и сам хеш хранятся в базе данных.
То есть получив доступ к СУБД, злоумышленник получает и значения хешей и соли.
Используйте локальный параметр!
Чтобы усложнить жизнь при атаке перебора следует дописать соль к паролю, а не наоборот (для людей, которые пишут слева направо, конечно).
Так как хеш-функция, как правило, вычисляется последовательно по строке (требования поточности алгоритма), то злоумышленнику при переборе «соленых» хешей, будет проще, когда подхешовое выражение начинается с соли.
Проще потому, что он (злоумышленник) может предвычислить заранее хеш(соль) и далее считать хеш(соль)+хеш(пароль) уже куда быстрее (практически с той же скоростью, что и просто хеш(пароль)). Для всех паролей, что он будет перебирать.
Для того чтобы еще усложнить жизнь атакующему, Solar Designer www.openwall.com/presentations/YaC2012-Password-Hashing-At-Scale/mgp00005.html предлагает ввести еще одну штуку, под названием локальный параметр.
Это по сути «вторая соль» дописывается ко всем (паролям+соль) конструкциям, и является одинаковой для всех хешей в базе. В чем же трюк? В том, что локального параметра в базе нет. Это константа системы, которая хранится в памяти приложения, куда она попадает из конфига (любым способом, только не из базы).
Очень простая и действенная мера, которая позволяет практически полностью исключить атаку перебора по данным только одного хранилища хешей (без знания локального параметра).
Единственный раз мы (ONsec) ломали хеши с локальным параметром, выработав при этом тактику атаки на сам локальный параметр (регистрируемся в приложении, затем ищем в базе свой хеш, соль (свой пароль мы и так знаем) и перебираем ЛП). И тщетно. На длинах 16+ байт для современных функций хеширования — это очень дорого по железу. В итоге проще оказалось скомпрометировать систему аутентификации (проставить себе role=admin в базе через UPDATE 😉 )
Защищайте свои хранилища надежно и грамотно!
Заключение
Буду реалистом — естественно, никто не станет переписывать свои проекты ради «каких-то» хешей. Но новые проекты можно писать на scrypt/bcrypt. А также — внедряйте локальный параметр даже на слабых MD5 — он правда помогает, проверено 🙂
При переходе на другой тип хеширования, помимо трудозатрат, часто встает вопрос производительности. Действительно, более стойкие алгоритмы потребляют больше ресурсов. Тестируйтесь перед внедрением для своих нагрузок по скорости аутентификации пользователей в секунду (для большинства крупных проектов переход на scrypt оказался безболезненным). Выбор конкретного идеального типа хеша в конкретной ситуации может сильно разнится. Так, например, ДБО все чаще выбирают железные решения для генерации хешей с заданной скоростью.
Немного о хэшах и безопасном хранении паролей
Upd. Если вы знаете, что такое BCrypt, можете дальше не читать. Если вы используете PHP 5.5+ то можете прочитать эту статью. Ниже же я изобрел свой велосипед, рабочий, но с двумя рулями, задний запасной. Молод был, горяч.
Привет, хабр! Сегодня, в процессе разработки системы аутентификации для своего проекта передо мной встал выбор — в каком виде хранить пароли пользователей в базе данных? В голову приходит множество вариантов. Самые очевидные:
Коллизия хеш-функций
Коллизия хеш-функции возникает, когда она выдает одинаковый результат на разные входные данные. Конечно же, вероятность этого достаточно мала, и зависит от длины хэша. Однако устаревшая (но до сих пор иногда используемая) функция crc32() возвращает в качестве хэша 32-битное целое число. Т.е., чтобы подобрать пароль к такому хэшу, по теории вероятности нужно получить 2^32 = 4 294 967 296 различных хэшей. Даже на моем бесплатном хостинге crc32 работает со скоростью порядка 350 000 раз в секунду — посчитайте сами сколько нужно секунд, чтобы взломать такой хэш 😉
Конечно же это не относится к md5() (128-битный хеш) и тем более sha1() (160-битный хеш). Использовать их коллизию практически невозможно, хотя есть одна статейка.
Радужные таблицы
Радужные таблицы состоят из хэшей наиболее часто употребляемых паролей — имен, дат рождения, названий животных и т.п. Эти таблицы могут включать миллионы, миллиарды значений, но работа с ними относительно быстра, и проверить хэш на соответствие одному из значений не составляет никакого труда. Частично, от них можно защититься с помощью «соли» или конструкций типа md5(sha1(md5($pass))).
Радужные таблицы. Часть 2
Статическая соль и тому подобные конструкции могут служить достаточно хорошо… пока структура этих конструкций и соль хранятся в тайне. Если же злоумышленник вызнает секрет хэширования — он с легкостью сможет модифицировать под него свою «радужную таблицу». А т.к. мы не можем абсолютно полагаться на систему защиты своего сервера, нужно искать другой вариант. Одним из решений может быть генерация уникальной соли для каждого юзера, что-то вроде:
Еще лучше генерировать совсем случайную соль, например так:
Конечно, уникальную соль придется вносить в базу данных, но даже получив доступ к ней, злоумышленник вряд ли сможет сгенерировать несколько миллионов радужных таблиц.
Скорость хэширования
Казалось бы — чем быстрее, тем лучше. Чем быстрее сгенерируется хэш, тем быстрее наш юзер сможет зарегистрироваться и начать уже приносить профит. Однако чем больше скорость хэширования, тем быстрее его сможет подобрать и хакер.
Современные ПК с мощными GPU, могут рассчитывать миллионы хэшей в секунду и больше. А это позволяет ломать пароли простым подбором, с помощью брутфорса-атак. Считаете что пароль в 8 символов достаточно безопасен? Если в пароле используются символы в нижнем и верхнем регистрах и цифры, то общее количество возможных символов составит 62 (26+26+10). Для пароля длиной в 8 символов, существует 62^8 различных комбинаций (порядка 218 триллионов). Со скоростью в 1 миллиард хэшей в секунду (достаточно маленькая для брутфорс-атаки), пароль будет сломан примерно за 60 часов. А для наиболее распространенной длины пароля в 6 символов, длительность расшифровки составит меньше двух минут.
Можно конечно пренебречь пользователями, использующими короткие и простые пароли, или заставить всех в добровольно-принудительном порядке использовать 10-символьные пароли, со знаками препинания и символами шумерской клинописи. Но лучше использовать более медленные функции хэширования. Например можно замедлить функцию хэша вручную в 1000 раз с помощью следующего кода:
Используя ее, вместо 60 часов, хакер будет ломать 8-символьный пароль около 7 лет. Более удобным вариантом замедления, является использование алгоритма Blowfish, реализованного в PHP через crypt(). Проверить доступность этого алгоритма можно с помощью if (CRYPT_BLOWFISH == 1) echo ‘it works!’; В PHP 5.3 Blowfish уже включен.
$2a — это указание на то, что будет использоваться алгоритм Blowfish
$10 — это сила замедления функции. В данном случае равна 2^10. Может принимать значения от 04 до 31
Используем ее на конкретном примере:
Такой код должен обеспечить максимальную безопасность — подобрать пароль нормальной сложности и длины (программными методами, конечно) практически невозможно.