Как узнать площадь трапеции
Площадь трапеции
Онлайн калькулятор
Через длины оснований и высоту
Чему равна площадь трапеции, если:
основание a =
основание b =
высота h =
Чему равна площадь трапеции если известны основания a и b, а также высота h?
Формула
Пример
Если у трапеции основание a = 3 см, основание b = 6 см, а высота h = 4 см, то её площадь:
S = ½ ⋅ (3 + 6) ⋅ 4 = 36 / 2 = 18 см²
Через среднюю линию и высоту
Чему равна площадь трапеции, если:
средняя линия m =
высота h =
Чему равна площадь трапеции если известны средняя линия m и высота h?
Формула
Пример
Если у трапеции средняя линия m = 6 см, а высота h = 4 см, то её площадь:
Через длины сторон и оснований
Чему равна площадь трапеции, если:
основание a =
основание b =
сторона c = сторона d =
Чему равна площадь трапеции если известны основания a и b, а также стороны c и d?
Формула
Пример
Если у трапеции основание a = 2 см, основание b = 6 см, сторона c = 4 см, а сторона d = 7 см, то её площадь:
Через диагонали и угол между ними
Чему равна площадь трапеции, если:
Чему равна площадь трапеции если известны диагонали d1 и d2 и угол между ними α?
Формула
Пример
Если у трапеции одна диагональ d1 = 5 см, другая диагональ d2 = 7 см, а угол между ними ∠α = 30°, то её площадь:
S = ½ ⋅ 5 ⋅ 7 ⋅ sin (30) = 17.5 ⋅ 0.5= 8.75 см²
Площадь равнобедренной трапеции
Через среднюю линию, боковую сторону и угол при основании
Чему равна площадь трапеции, если:
средняя линия m =
сторона c =
угол α =
Чему равна площадь равнобедренной трапеции если средняя линия m, боковая сторона с, a угол при основании α?
Формула
Пример
Если у равнобедренной трапеции средняя линия m = 6 см, сторона c = 4 см, а угол при основании ∠α = 30°, то её площадь:
S = 6 ⋅ 4 ⋅ sin (30) = 24 ⋅ 0.5 = 12 см²
Через радиус вписанной окружности
Чему равна площадь трапеции, если:
Чему равна площадь равнобедренной трапеции если радиус вписанной окружности r, a угол при основании α?
Формула
Пример
Если у равнобедренной трапеции радиус вписанной окружности r = 5 см, а угол при основании ∠α = 30°, то её площадь:
S = 4 ⋅ 5² / sin (30) = 100 / 0.5 = 200 см²
Площадь трапеции
Трапеция — геометрическая фигура, представляющая собой выпуклый четырёхугольник, у которого основания параллельны, а боковые стороны – нет. Средняя линия трапеции — отрезок, соединяющий середины боковых сторон. Калькуляторы для нахождения площади трапеции находятся внизу страницы.
Формулы нахождения площади
Существует несколько базовых способов нахождения площади трапеции, в зависимости от того, какие исходные данные известны.
Через основания и высоту
Площади трапеции можно определить, если известны значения длин ее оснований и высоты:
где a и b – основания, h – высота.
Через среднюю линию и высоту
где m – средняя линия, h – высота.
Через четыре стороны
Пусть a – верхнее основание, b – нижнее, c и d – боковые стороны трапеции. Тогда формула для нахождения площади:
По диагоналям и углу между ними
где d1 и d2 – диагонали трапеции, α – угол между ними.
Через вписанную в равнобедренную трапецию окружность
где r – радиус окружности, α – угол при основании трапеции.
Расчет площади трапеции через высоту, верхнее и нижнее основание
Расчет площади трапеции через значения ее высоты и средней линии.
Площадь трапеции
Площадь трапеции, формулы расчета, определение,
способы найти площадь, нахождение площади
через величины и примеры площади трапеции.
Все формулы расчета площади трапеции
через основания и угол, периметр, радиус,
синус и две стороны, диагональ,
высоту, среднюю линию.
Площадь трапеции через окружность вписанную можно
найти, зная радиус окружности вписанной в трапецию
и некоторые другие величины.
Формулы площади трапеции
Площадь любых трапеций
Ⅰ. Площадь трапеции через основания и высоту:
\[ S = \frac <2>\cdot h \]
a,b — основания трапеции;
h — высота трапеции;
Ⅱ. Площадь трапеции через высоту и среднюю линию:
\[ S = mh \]
m — средняя линия трапеции;
h — высота трапеции;
Ⅲ. Площадь трапеции через диагонали и угол между ними:
\[ S =\frac<1><2>d_1d_2 \cdot \sin \alpha \]
\( d_1, d_2 \) - диагонали трапеции;
sin α — синус угла альфа в трапеции;
Ⅳ. Площадь трапеции через периметр, высоту и боковые стороны:
\[ S = \frac
P — периметр трапеции;
c,d — боковые стороны трапеции;
h — высота трапеции;
Ⅴ. Площадь трапеции через основания и боковые стороны:
\[ S = \frac <2>\cdot \sqrt
a,b — основания трапеции;
с,d — боковые стороны трапеции;
Ⅵ. Площадь трапеции через основания и углы:
a,b — основания трапеции;
α — угол при основании a в трапеции;
β — угол при основании b в трапеции;
sin α — синус угла альфа в трапеции;
sin β — синус угла бетта в трапеции;
Площадь равнобедренной трапеции
Ⅰ. Площадь трапеции через синус угла, среднюю линию и боковую сторону:
l — средняя линия равнобедренной трапеции;
d — боковая сторона равнобедренной трапеции;
α — угол альфа при боковой стороне d равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
Ⅱ. Площадь трапеции через диагонали и синус угла:
\[ S = \frac
d — диагональ равнобедренной трапеции;
α — угол между двумя диагоналями в равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
Ⅲ. Площадь трапеции через радиус вписанной окружности и основания:
r — радиус вписанной окружности равнобедренной трапеции;
a, b — основания равнобедренной трапеции;
Ⅳ. Площадь трапеции через основания:
a, b — основания равнобедренной трапеции;
Ⅴ. Площадь трапеции через основания и среднюю линию:
l — средняя линия равнобедренной трапеции;
a, b — основания равнобедренной трапеции;
Ⅵ. Площадь трапеции через синус угла и стороны:
\[ S = c \cdot \sin α \cdot (a-c \cdot \cos α) \]
a — нижнее основание равнобедренной трапеции;
с — боковая сторона равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
cos α — косинус угла альфа в равнобедренной трапеции;
Ⅶ. Площадь трапеции через угол и радиус вписанной окружности:
r — радиус вписанной окружности равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
Определения трапеции
Трапеция — это четырехугольник, у которого две
стороны параллельны а две другие нет.
Зная углы трапеции, можно определить, к какому виду
она относится. Всего различают три вида трапеций:
Площадь равнобедренной, прямоугольной трапеции,
можно найти через формулы площади обычной трапеции.
Формул, с помощью которых, можно найти площадь трапеции
через описанную окружность около трапеции, не существует.
Элементы трапеции
Любая трапеция является четырехугольником,
поэтому у трапеции 4 угла и 4 стороны.
Основание трапеции — это сторона, противолежащая
сторона которой параллельна.
Боковая сторона трапеции — это сторона, противолежащая
сторона которой не параллельна.
Средняя линия трапеции — это отрезок, соединяющий
середины боковых сторон трапеции.
Диагональ трапеции — это отрезок, соединяющий две
вершины, которые лежат в разных концах трапеции.
Высота трапеции — это отрезок, соединяющий меньшее основание с большим,
образуя при этом два угла по 90 градусов на большей стороне.
Основания у трапеции не могут быть никогда равны.
Боковые стороны могут быть равны только,
если трапеция — равнобедренная.
Площадь трапеции — это площадь геометрической фигуры,
у которой четыре стороны и четыре угла, причем только
две стороны параллельны а остальные нет.
Трапеция
Основные свойства трапеции
AK = KB, AM = MC, BN = ND, CL = LD
BC : AD = OC : AO = OB : DO
d 1 2 + d 2 2 = 2 a b + c 2 + d 2
Формулы определения длин сторон трапеции:
a = b + h · ( ctg α + ctg β )
b = a – h · ( ctg α + ctg β )
a = b + c· cos α + d· cos β
b = a – c· cos α – d· cos β
4. Формулы боковых сторон через высоту и углы при нижнем основании:
с = | h | d = | h |
sin α | sin β |
Как найти площадь трапеции через четыре стороны
Отнимите от большего основания меньшее.
Найдите квадрат полученного числа.
Прибавьте к результату квадрат одной боковой стороны и отнимите квадрат второй.
Поделите полученное число на удвоенную разность оснований.
Найдите квадрат результата и отнимите его от квадрата боковой стороны.
Найдите корень из полученного числа.
Умножьте результат на половину от суммы оснований.
Средняя линия трапеции
Средняя линия – отрезок, соединяющий середины боковых сторон трапеции.
Формулы определения длины средней линии трапеции:
2. Формула определения длины средней линии через площадь и высоту:
m = | S |
h |
Через длины оснований и высоту
Чему равна площадь трапеции если известны основания a и b, а также высота h?
Формула
Пример
Если у трапеции основание a = 3 см, основание b = 6 см, а высота h = 4 см, то её площадь:
S = ½ ⋅ (3 + 6) ⋅ 4 = 36 / 2 = 18 см²
Площадь трапеции через перпендикулярные диагонали
Как вычислить площадь равнобедренной трапеции через четыре стороны
Отнимите от большего основания трапеции меньшее и поделите результат на два.
Найдите квадрат полученного числа и отнимите его от квадрата боковой стороны.
Найдите корень из результата.
Умножьте полученное число на сумму оснований и поделите на два.
Таблица с формулами площади трапеции
В зависимости от известных исходных данных и вида трапеции, площадь трапеции можно вычислить по различным формулам.
эскиз | формула | ||
Площадь для всех видов трапеции | |||
1 | высота и два основания | ||
2 | высота и средняя линия | ||
3 | четыре стороны | ||
4 | диагонали и угол между ними | ||
5 | основания и углы при одном из оснований | ||
Площадь равнобедренной трапеции | |||
6 | стороны | ||
7 | основание, боковые стороны и угол при основании | ||
8 | основание, боковые стороны и угол при основании | ||
9 | основания и углы при одном из оснований | ||
10 | диагонали и угол между ними | ||
11 | средняя линия, боковые стороны и углы между основанием и боковыми сторонами | ||
12 | радиус вписанной окружности и угол при основании | ||
13 | основания и радиус вписанной окружности | ||
14 | основания и углы при одном из оснований | ||
15 | основания и боковые стороны | ||
16 | основания и средняя линия |
Найти площадь равнобедренной трапеции, зная радиус вписанной окружности и угол
Через среднюю линию, боковую сторону и угол при основании
Чему равна площадь равнобедренной трапеции если средняя линия m, боковая сторона с, a угол при основании α?
Формулы определения длин отрезков проходящих через трапецию:
1. Формула определения длин отрезков проходящих через трапецию:
KM = NL = | b | KN = ML = | a | TO = OQ = | a · b |
2 | 2 | a + b |
Пусть a и b основания трапеции. доказать что отрезок, соединяющий середины её диагоналей равен 1/2 * | а – б|?
Возьмем трапецию ABCD
Определим точку М как середину диагонали АС, точку N как середину диагонали BD. Тогда средняя линия трапеции KF будет проходить через точки M и N.
Вспомним свойство средней линии трапеции: средняя линия трапеции является параллельной основаниям и равняется полусумме их длин.
Рассмотрим треугольник ACD:
Рассмотрим треугольник BCD
Выразим MN через отрезки MF и NF:
Подставим в формулу значения отрезков MF и NF:
Площадь трапеции через основания и два угла
Как найти площадь трапеции
Трапеция — геометрическая фигура, две противоположных стороны которой параллельны, а две других не параллельны. На рисунке трапеция изображается таким способом, чтобы параллельными оказались нижняя и верхняя стороны, которые получили название «основания». Верхняя сторона короче нижней. Такой рисунок используется для наглядности, так легче понять, как выполнять дополнительные построения, необходимые для решения задач.
Боковые стороны могут быть расположены под произвольными углами к основаниям. Если одна из сторон перпендикулярна основанию, то трапецию называют прямоугольной. При равных боковых сторонах — равнобедренной.
Важные линии трапеции
Для решения задачи нахождения площади трапеции необходимо использовать ряд линий, так или иначе характеризующих трапецию. Это высота, диагональ и средняя линия.
Высота — перпендикулярный отрезок, соединяющий верхнее и нижнее основание. На рисунках принято проводить перпендикуляр из вершины угла, чтобы не загромождать схему. Но на практике высоту можно опускать с любой точки верхнего основания.
Диагональ — отрезок, соединяющий противоположные вершины трапеции. У каждой трапеции две диагонали, разбивающие фигуру на два равных треугольника.
Средняя линия — отрезок, соединяющий середины боковых сторон. Длина линии равна половине суммы длин оснований.
Вторая средняя линия — отрезок, соединяющий середины оснований. У равнобедренной трапеции совпадает с высотой.
Названные линии используются при вычислении площади трапеции. Это одна из геометрических фигур, площадь которой можно найти разными способами. Почему нужно знать все формулы, как найти площадь трапеции? В условиях задач часто приведена только часть данных о фигуре, например, углы и диагонали, длина сторон, средняя линия и высота и т.д.
Формулы площади трапеции
Для каждого, или почти каждого случая найдены готовые формулы, в которые остается только подставить числовые данные, чтобы найти площадь произвольной трапеции. Рассмотрим самые распространенные случаи.
Самый простой способ вычисления площади — по длине оснований и высоте. Зная эти величины, используем формулу S = 1/2(a + b)*h. Сначала найдем сумму длин оснований, затем разделим на два и умножим на высоту. Именно такой порядок действий даст желаемый результат. На практике, когда, например, нужно найти площадь трапециевидного земельного участка, используется чаще всего именно эта формула. Измерить длину оснований не сложно, как и высоту фигуры.
Вторая задача — как узнать площадь трапеции через длину средней линии. Вспомним, что длина этой линии равна половине суммы оснований. Фактически получаем ту же формулу, что и в предыдущем случае, только записываем ее по-другому S=mh, где m – длина средней линии.
Третья задача — как найти площадь трапеции через диагонали. Кроме длины диагоналей нужен еще и хотя бы один из углов между ними. Для определения площади достаточно умножить длины диагоналей между собой и затем на синус любого угла между ними. Эта задача не сложнее предыдущих, зная угол в градусах, найти синус можно по специальным таблицам.
Четвертая задача — как найти площадь трапеции, зная все стороны. Здесь все несколько труднее. Необходимо произвести ряд вычислений, не отличающихся большой сложностью, но занимающих некоторое время. Распишем процесс вычисления по алгоритму:
Все выглядит достаточно громоздко, но если воспользоваться готовой формулой, то не так и страшно.
Для равнобедренной трапеции формула упрощается:
Пятая задача — формула Герона для трапеции. S = (a + b)/4|a — b| · √(p — a)(p — b)(p — a — c)(p — a — d). Здесь тоже задействовано все четыре стороны и Р – полупериметр. Наиболее распространенная ошибка, когда вместо полупериметра, то есть суммы длин сторон разделенной на 2, используют периметр.
Шестая задача — площадь трапеции через синус угла. Для решения этой задачи нужно знать длину оснований и синусы углов при нижнем основании. Формула выглядит так: S=2(b2−a2)⋅sin(α+β)sin(α)⋅sin(β). Для ее использование необходимы первичные знания по тригонометрии.
Седьмая задача — найти площадь трапеции, зная радиус вписанной окружности и длину оснований. Формула не представляет сложности S=r⋅(a+b)=1/2√a⋅b⋅(a+b), важно только не перепутать порядок действий.
Формул для трапеции значительно больше, но владея теми, которые названы выше, вы справитесь с любой задачей.