Как упрощать алгебраические дроби
Алгебраические дроби. Сокращение алгебраических дробей
Прежде чем перейти к изучению алгебраических дробей рекомендуем вспомнить, как работать с обыкновенными дробями.
Любая дробь, в которой есть буквенный множитель, называется алгебраической дробью.
Примеры алгебраических дробей.
Как и у обыкновенной дроби, в алгебраической дроби есть числитель (наверху) и знаменатель (внизу).
Сокращение алгебраической дроби
Алгебраическую дробь можно сокращать. При сокращении пользуются правилами сокращения обыкновенных дробей.
Напоминаем, что при сокращении обыкновенной дроби мы делили и числитель, и знаменатель на одно и тоже число.
Алгебраическую дробь сокращают таким же образом, но только числитель и знаменатель делят на один и тот же многочлен.
Рассмотрим пример сокращения алгебраической дроби.
Разделим, и числитель, и знаменатель на « a 2 ». При делении одночленов используем свойство степени частного.
Напоминаем, что любая буква или число в нулевой степени — это единица.
Нет необходимости каждый раз подробно записывать, на что сокращали алгебраическую дробь. Достаточно держать в уме степень, на которую сокращали, и записывать только результат.
Краткая запись сокращения алгебраической дроби выглядит следующим образом.
Сокращать можно только одинаковые буквенные множители.
Нельзя сокращать
Можно сокращать
Другие примеры сокращения алгебраических дробей.
Как сократить дробь с многочленами
Рассмотрим другой пример алгебраической дроби. Требуется сократить алгебраическую дробь, у которой в числителе стоит многочлен.
Сокращать многочлен в скобках можно только с точно таким же многочленом в скобках!
Ни в коем случае нельзя сокращать часть многочлена внутри скобок!
Неправильно
Правильно
Определить, где заканчивается многочлен, очень просто. Между многочленами может быть только знак умножения. Весь многочлен находится внутри скобок.
После того, как мы определили многочлены алгебраической дроби, сократим многочлен « (m − n) » в числителе с многочленом « (m − n) » в знаменателе.
Примеры сокращения алгебраических дробей с многочленами.
Вынесение общего множителя при сокращении дробей
Чтобы в алгебраических дробях появились одинаковые многочлены иногда нужно вынести общий множитель за скобки.
В таком виде сократить алгебраическую дробь нельзя, так как многочлен
« (3f + k) » можно сократить только со многочленом « (3f + k) ».
Поэтому, чтобы в числителе получить « (3f + k) », вынесем общий множитель « 5 ».
Сокращение дробей с помощью формул сокращенного умножения
В других примерах для сокращения алгебраических дробей требуется
применение формул сокращенного умножения.
В первоначальном виде сократить алгебраическую дробь нельзя, так как нет одинаковых многочленов.
Но если применить формулу разности квадратов для многочлена « (a 2 − b 2 ) », то одинаковые многочлены появятся.
Другие примеры сокращения алгебраических дробей с помощью формул сокращенного умножения.
Алгебраические дроби
Алгебраическая дробь — это дробь, числитель и знаменатель которой являются многочленами. Другими словами, алгебраическая дробь — это деление двух многочленов, записанное с помощью дробной черты.
Любую алгебраическую дробь можно представить в виде выражения:
где a и b — это многочлены и b≠0.
Дробная черта в записи алгебраической дроби заменяет собой скобки, которые должны были бы присутствовать, если частное было бы записано не в виде дроби:
(a + 3) : (a 2 + 9) = | a + 3 | . |
a 2 + 9 |
Примеры алгебраических дробей:
a + 3 | ; | 7 | ; | 1 | . |
a 2 + 9 | x | 2 |
Обратите внимание на последний пример: обыкновенные дроби являются одновременно и алгебраическими, так как любое число можно считать многочленом, состоящим из одного члена.
Любой многочлен можно записать в виде алгебраической дроби, знаменатель которой равен единице:
a 2 + 9 = | a 2 + 9 | ; |
1 |
15 = | 15 | ; |
1 |
x 2 + 2xy + y 2 = | x 2 + 2xy + y 2 | . |
1 |
Сокращение алгебраических дробей
Основное свойство алгебраической дроби:
Если числитель и знаменатель алгебраической дроби умножить или разделить на один и тот же многочлен, то получится дробь, равная данной.
В виде буквенной формулы основное свойство алгебраической дроби можно записать так:
a | = | a · c | и | a | = | a : c |
b | b · c | b | b : c | , |
Используя основное свойство алгебраических дробей, выполняют их сокращение. Сокращение алгебраических дробей — это деление числителя и знаменателя дроби на их общий множитель.
Чтобы сократить алгебраическую дробь, надо числитель и знаменатель разложить на множители. Если числитель и знаменатель имеют общие множители, то дробь можно сократить. Если у числителя и знаменателя общих множителей нет, то дробь является несократимой.
Пример 1. Сократить дробь:
Решение: Разложим числитель и знаменатель на множители, выделим их общий множитель и сократим дробь на него:
ab 2 + bc | = | b (ab + с) | = | ab + с | . |
ab 2 | b · ab | ab |
Пример 2. Упростить дробь:
Решение: Сначала мы можем сократить дробь на общий множитель x в первой степени:
Теперь стоит внимательно посмотреть на многочлены, заключённые в скобки:
Теперь и в числителе и в знаменателе у нас есть общий множитель, который можно сократить:
Пример 3. Сократите дробь:
24ab 3 c 5 | . |
16a 5 b 3 c |
Решение: Числитель и знаменатель дроби являются одночленами. Каждый одночлен — это произведение, состоящее из множителей, значит, можно сразу переходит к сокращению:
Как сокращать алгебраические дроби?
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение
Алгебраическая дробь — это дробь, в числителе и/или знаменателе которой стоят алгебраические выражения (буквенные множители). Вот так:
Алгебраическая дробь содержит буквенные множители и степени.
Необыкновенной алгебраическую дробь делают буквы. Если заменить их на цифры, то карета превратится в тыкву — алгебраическая дробь тут же станет обыкновенной.
Если вы засомневались, что должно быть сверху — числитель или знаменатель — переходите по ссылке и освежите знания по теме обыкновенных дробей.
Сокращение алгебраических дробей
Сократить алгебраическую дробь — значит разделить ее числитель и знаменатель на общий множитель. Общий множитель числителя и знаменателя в алгебраической дроби — многочлен и одночлен.
Если в 7 классе только и разговоров, что об обыкновенных дробях, то 8 класс сокращает исключительно алгебраические дроби.
Сокращение дробей с буквами и степенями проходит в три этапа:
Для сокращения степеней в дробях применяем правило деления степеней с одинаковыми основаниями:
Пример сокращения дроби со степенями и буквами:
Получаем сокращенную дробь.
Запоминаем: сокращать можно только одинаковые буквенные множители. Иными словами, сокращать можно только дроби с одинаковыми буквами.
❌ Так нельзя | ✅ Так можно |
Примеры сокращения алгебраических дробей с одночленами:
Пример сокращения №1.
Получаем сокращенную алгебраическую дробь.
Пример сокращения №2.
Получаем сокращенную дробь.
Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Сокращение алгебраических дробей с многочленами
Чтобы верно сократить алгебраическую дробь с многочленами, придерживайтесь двух главных правил:
Запомните: многочлены в алгебраической дроби находятся в скобках. Между этими скобками вклиниться может только знак умножения. Всем остальным знакам там делать нечего.
Примеры сокращения алгебраических дробей с многочленами:
Последовательно сокращаем: сначала x, затем (x+c), далее сокращаем дробь на 6 (общий множитель).
Сокращаем многочлены a+b (в дроби их 3). Многочлен в числителе стоит в квадрате, поэтому мысленно оставляем его при сокращении.
Вынесение общего множителя при сокращении дробей
При сокращении алгебраических дробей иногда не хватает одинаковых многочленов. Для того, чтобы они появились, вынесите общий множитель за скобки.
Чтобы легко и непринужденно выносить множитель за скобки, пошагово выполняйте 4 правила:
Алгебра не терпит неточность. Всегда проверяйте, верно ли вынесен множитель за скобки — сделать это можно по правилу умножения многочлена на одночлен.
Для умножения одночлена на многочлен нужно умножить поочередно все члены многочлена на этот одночлен. |
Пример 1.
Пример 2.
Как решаем: выносим общий множитель a за скобки и сокращаем оставшиеся в скобках многочлены.
Сокращение дробей. Формулы сокращенного умножения
Перед формулами сокращенного умножения не устоит ни одна дробь — даже алгебраическая.
Чтобы легко ориентироваться в формулах сокращенного умножения, сохраняйте и заучивайте таблицу. Формулы подскажут вам, как решать алгебраические дроби.
Примеры сокращения дробей с помощью формул сокращенного умножения:
Чтобы раскрыть тему сокращения алгебраических дробей и полностью погрузиться в мир числителей и знаменателей, решите следующие примеры для самопроверки.
Примеры сокращения дробей за 7 и 8 классы
Тема сокращения алгебраических дробей достаточно обширна, и требует к себе особого внимания. Чтобы знания задержалась в голове хотя бы до ЕГЭ, сохраните себе памятку по сокращению дробей. Этот алгоритм поможет не растеряться при встрече с алгебраическими дробями лицом к лицу.
Сокращение алгебраических дробей: правило, примеры.
Данная статья продолжает тему преобразования алгебраических дробей: рассмотрим такое действие как сокращение алгебраических дробей. Дадим определение самому термину, сформулируем правило сокращения и разберем практические примеры.
Смысл сокращения алгебраической дроби
В материалах об обыкновенной дроби мы рассматривали ее сокращение. Мы определили сокращение обыкновенной дроби как деление ее числителя и знаменателя на общий множитель.
Сокращение алгебраической дроби представляет собой аналогичное действие.
Сокращение алгебраической дроби – это деление ее числителя и знаменателя на общий множитель. При этом, в отличие от сокращения обыкновенной дроби (общим знаменателем может быть только число), общим множителем числителя и знаменателя алгебраической дроби может служить многочлен, в частности, одночлен или число.
Конечной целью сокращения алгебраической дроби является дробь более простого вида, в лучшем случае – несократимая дробь.
Все ли алгебраические дроби подлежат сокращению?
С алгебраическими дробями все так же: они могут иметь общие множители числителя и знаменателя, могут и не иметь. Наличие общих множителей позволяет упростить исходную дробь посредством сокращения. Когда общих множителей нет, оптимизировать заданную дробь способом сокращения невозможно.
Таким образом, вопрос выяснения сократимости алгебраической дроби не так прост, и зачастую проще работать с дробью заданного вида, чем пытаться выяснить, сократима ли она. При этом имеют место такие преобразования, которые в частных случаях позволяют определить общий множитель числителя и знаменателя или сделать вывод о несократимости дроби. Разберем детально этот вопрос в следующем пункте статьи.
Правило сокращения алгебраических дробей
Правило сокращения алгебраических дробей состоит из двух последовательных действий:
Самым удобным методом отыскания общих знаменателей является разложение на множители многочленов, имеющихся в числителе и знаменателе заданной алгебраической дроби. Это позволяет сразу наглядно увидеть наличие или отсутствие общих множителей.
Характерные примеры
Несмотря на некоторую очевидность, уточним про частный случай, когда числитель и знаменатель алгебраической дроби равны. Подобные дроби тождественно равны 1 на всей ОДЗ переменных этой дроби:
Поскольку обыкновенные дроби являются частным случаем алгебраических дробей, напомним, как осуществляется их сокращение. Натуральные числа, записанные в числителе и знаменателе, раскладываются на простые множители, затем общие множители сокращаются (если таковые имеются).
К примеру, 24 1260 = 2 · 2 · 2 · 3 2 · 2 · 3 · 3 · 5 · 7 = 2 3 · 5 · 7 = 2 105
Произведение простых одинаковых множителей возможно записать как степени, и в процессе сокращения дроби использовать свойство деления степеней с одинаковыми основаниями. Тогда вышеуказанное решение было бы таким:
(числитель и знаменатель разделены на общий множитель 2 2 · 3 ). Или для наглядности, опираясь на свойства умножения и деления, решению дадим такой вид:
24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 2 2 · 3 3 2 · 1 5 · 7 = 2 1 · 1 3 · 1 35 = 2 105
По аналогии осуществляется сокращение алгебраических дробей, у которых в числителе и знаменателе имеются одночлены с целыми коэффициентами.
Решение
Возможно записать числитель и знаменатель заданной дроби как произведение простых множителей и переменных, после чего осуществить сокращение:
Однако, более рациональным способом будет запись решения в виде выражения со степенями:
Когда в числителе и знаменателе алгебраической дроби имеются дробные числовые коэффициенты, возможно два пути дальнейших действий: или отдельно осуществить деление этих дробных коэффициентов, или предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на некое натуральное число. Последнее преобразование проводится в силу основного свойства алгебраической дроби (про него можно почитать в статье «Приведение алгебраической дроби к новому знаменателю»).
Решение
Возможно сократить дробь таким образом:
Когда мы сокращаем алгебраические дроби общего вида, в которых числители и знаменатели могут быть как одночленами, так и многочленами, возможна проблема, когда общий множитель не всегда сразу виден. Или более того, он попросту не существует. Тогда для определения общего множителя или фиксации факта о его отсутствии числитель и знаменатель алгебраической дроби раскладывают на множители.
Решение
Разложим на множители многочлены в числителе и знаменателе. Осуществим вынесение за скобки:
Мы видим, что выражение в скобках возможно преобразовать с использованием формул сокращенного умножения:
Краткое решение без пояснений запишем как цепочку равенств:
Случается, что общие множители скрыты числовыми коэффициентами. Тогда при сокращении дробей оптимально числовые множители при старших степенях числителя и знаменателя вынести за скобки.
Решение
На первый взгляд у числителя и знаменателя не существует общего знаменателя. Однако, попробуем преобразовать заданную дробь. Вынесем за скобки множитель х в числителе:
Теперь видна некая схожесть выражения в скобках и выражения в знаменателе за счет x 2 · y . Вынесем за скобку числовые коэффициенты при старших степенях этих многочленов:
Теперь становится виден общий множитель, осуществляем сокращение:
Сделаем акцент на том, что навык сокращения рациональных дробей зависит от умения раскладывать многочлены на множители.
Как правильно сокращать дроби — объяснение на примерах
Смысл сокращения алгебраической дроби
Алгебраическая дробь — дробь, числитель и знаменатель которой состоят из многочленов с буквенными множителями.
В алгебре принято считать, что обыкновенные дроби — частный случай алгебраических.
Из курса по обыкновенным дробям (математика за 3 — 5 классы) известно, что сокращение — это деление числителя и знаменателя на общий множитель. Это объяснение справедливо не только для обыкновенных дробей, но и для алгебраических. Разница заключается в том, что при сокращении алгебраической дроби общим делителем может быть не только число, но и переменная или выражение.
Часто алгебраическая дробь является сложной математической конструкцией. Сокращение позволяет упростить дальнейшие операции с дробью: сложение, умножение, сравнение и т. д.
Правило сокращения алгебраических дробей
При сокращении дроби руководствуются следующим правилом: числитель и знаменатель можно делить на одинаковое число, одноименные буквы или на одинаковые множители — многочлены.
Нельзя сокращать дробь на разноименные буквенные обозначения. Также нельзя делить числитель и знаменатель на переменную или цифру, входящую в многочлен, если ее нельзя вынести как общий множитель выражения.
Приведем пример правильного сокращения дроби:
Вынесение общего множителя при сокращении дробей
Если числитель и знаменатель представляют собой многочлены, то при сокращении дробей общий множитель удобнее вынести за скобки, после чего разделить на него числитель и знаменатель.
Вынесение общего множителя — это запись выражения F в виде произведения PQ, где P — общий множитель, Q — результат деления выражения F на P.
Отметим, что общим делителем может быть как число или переменная, так и целое выражение.
Если при сокращении необходимо изменить знаки в выражении на противоположные, выносят (-1).
Сокращение алгебраических дробей с помощью формул сокращенного умножения
На практике часто встречаются дроби, в числителе и знаменателе которых имеются выражения в различной степени, например, квадратные, кубические.
Для таких выражений используют формулы сокращенного умножения.
Приведем упомянутые тождества:
Квадрат суммы: ( a + b ) 2 = a 2 + 2 a b + b 2
Куб суммы: ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3
Сокращение алгебраических дробей с многочленами
Сокращение алгебраической дроби, числитель и знаменатель которой представляют собой многочлены, сводится к вынесению общего делителя в числителе и знаменателе. При работе с такими дробями используют один (или комбинируют оба) из представленных выше способов:
Однако не все многочлены можно преобразовать по формулам сокращенного умножения или поделить на общий множитель. Если дробь нельзя упростить, то говорят, что дробь несократима.
Пояснение на примерах
Рассмотрим решения нескольких контрольных примеров по упрощению дробей. В качестве подготовки можно попробовать решить предлагаемые примеры самостоятельно.
Тренажер. Соедините соответствующие карточки с формулами сокращенного умножения.
Упростить дробь: 5 a + 25 b + 10 a + 5 b + 2
Общий множитель выражения в числителе — число 5. Вынесем его за скобки: 5 ( a + 5 b + 2 ) a + 5 b + 2
Получили одинаковый трехчлен в числителе и знаменателе. Сократим дробь на общий делитель.
Обратим внимание на числитель. Под корнем находится выражение, которое можно преобразовать в квадрат суммы. В знаменателе в множителе (9x+6y) можно вынести за скобку число 3. Выполним перечисленные операции:
Вынесем квадрат суммы из-под корня, получим:
Теперь у числителя и знаменателя есть общий делитель (3x+2y), сократим на него дробь.
Начнем с преобразования числителя. Из первого выражения в скобках можно получить формулу квадрата разности. Для этого вынесем (-1) за скобку и поменяем знаки на противоположные. Из второго выражения можно вынести общий множитель — число 5. Перепишем дробь в виде:
В числителе получили два одинаковых выражения, при их умножении показатели степени складываются, то есть:
Теперь преобразуем знаменатель. Вынесем общий множитель выражения в скобках — переменную b:
Теперь многочлен в скобках представляет собой формулу куба разности. Перепишем дробь:
У числителя и знаменателя два общих делителя: число 5 и куб разности. Сократим дробь на общие множители.
В числителе и знаменателе нет формул сокращенного умножения, также у числителя и знаменателя нет общего делителя. Дальнейшие преобразования невозможны.