Как улучшить скорость счета
Устный счет: техника быстрого счета в уме
Секреты устного счёта
Существуют приемы устного счета — простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.
Прибавляем числа 7,8,9
Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.
Быстро складываем двузначные числа
Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».
Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:
Складываем в уме трехзначные числа
Особенности вычитания: приведение к круглым числам
Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.
Вычитаем в уме трехзначные числа
Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.
Умножить и разделить
Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:
Умножаем и делим на 4, 6, 8, 9
Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.
Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:
Как умножать и делить на 5
Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.
Умножение на 9
Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:
Счет на пальцах
Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:
Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь.
Устный счёт на автомате
Во-первых, необходимо хорошо знать состав числа и таблицу умножения.
Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.
Эффективный счёт в уме или разминка для мозга
Эта статья навеяна топиком «Как и насколько быстро вы считаете в уме на элементарном уровне?» и призвана распространить приёмы С.А. Рачинского для устного счёта.
Рачинский был замечательным педагогом, преподававшим в сельских школах в XIX веке и показавшим на собственном опыте, что развить навык быстрого устного счёта можно. Для его учеников не было особой проблемой посчитать подобный пример в уме:
Используем круглые числа
Один из самых распространённых приёмов устного счёта заключается в том, что любое число можно представить в виде суммы или разности чисел, одно или несколько из которых «круглое»:
Т.к. на 10, 100, 1000 и др. круглые числа умножать быстрее, в уме нужно сводить всё к таким простым операциям, как 18 x 100 или 36 x 10. Соответственно, и складывать легче, «отщепляя» круглое число, а затем добавляя «хвостик»: 1800 + 200 + 190.
Еще пример:
Упростим умножение делением
При устном счёте бывает удобнее оперировать делимым и делителем нежели целым числом (например, 5 представлять в виде 10:2, а 50 в виде 100:2):
Аналогично выполняется умножение или деление на 25, ведь 25 = 100:4. Например,
Теперь не кажется невозможным умножить в уме 625 на 53:
Возведение в квадрат двузначного числа
Оказывается, чтобы просто возвести любое двузначное число в квадрат, достаточно запомнить квадраты всех чисел от 1 до 25. Благо, квадраты до 10 мы уже знаем из таблицы умножения. Остальные квадраты можно посмотреть в нижеприведённой таблице:
Приём Рачинского заключается в следующем. Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю. Например,
В общем случае (M — двузначное число):
Попробуем применить данный трюк при возведении в квадрат трёхзначного числа, разбив его предварительно на более мелкие слагаемые:
Хм, я бы не сказала, что это сильно легче, чем возведение в столбик, но, возможно, со временем можно приноровиться.
И начинать тренировки, конечно, следует с возведения в квадрат двузначных чисел, а там уже и до дизассемблирования в уме можно дойти.
Умножение двузначных чисел
Этот интересный приём был придуман 12-летним учеником Рачинского и является одним из вариантов добавления до круглого числа.
Пусть даны два двузначных числа, у которых сумма единиц равна 10:
Составив их произведение, получим:
Например, вычислим 77 x 13. Сумма единиц этих чисел равна 10, т.к. 7 + 3 = 10. Сначала ставим меньшее число перед большим: 77 x 13 = 13 x 77.
Чтобы получить круглые числа, мы забираем три единицы от 13 и добавляем их к 77. Теперь перемножим новые числа 80 x 10, а к полученному результату прибавим произведение отобранных 3 единиц на разность старого числа 77 и нового числа 10:
У этого приёма есть частный случай: всё значительно упрощается, когда у двух сомножителей одинаковое число десятков. В этом случае число десятков умножается на следующее за ним число и к полученному результату приписывается произведение единиц этих чисел. Посмотрим, как элегантен этот приём на примере.
48 x 42. Число десятков 4, последующее число: 5; 4 x 5 = 20. Произведение единиц: 8 x 2 = 16. Значит,
99 x 91. Число десятков: 9, последующее число: 10; 9 x 10 = 90. Произведение единиц: 9 x 1 = 09. Значит,
Ага, то есть, чтобы перемножить 95 x 95, достаточно посчитать 9 x 10 = 90 и 5 x 5 = 25 и ответ готов:
Тогда предыдущий пример можно вычислить немного проще:
Вместо заключения
Казалось бы, зачем уметь считать в уме в 21 веке, когда можно просто подать голосовую команду смартфону? Но если задуматься, что будет с человечеством, если оно будет взваливать на машины не только физическую работу, но и любую умственную? Не деградирует ли оно? Даже если не рассматривать устный счёт как самоцель, для закалки ума он вполне подходит.
Использованная литература:
«1001 задача для умственного счёта в школе С.А. Рачинского».
22 простых способа научиться быстро считать в уме
Добрый день! Много вопросов поступает от школьников по разным предметам. Сегодня поговорим о том, как быстро считать в уме, чтобы легко решать разные примеры и задачи по математике.
Материал также будет полезен взрослым, ведь нам тоже приходится немало высчитывать в уме в быту. А еще это улучшает мозговую активность, концентрацию, внимание и память.
Читаем, изучаем, учимся легко и интересно.
Надеюсь, что вам будет понятно и обязательно пригодится на деле. Жду ваших комментариев, пальчиков вверх и репостов!
Вступление
В современном мире с множеством сверх прогрессивных девайсов, счет в уме не утратил своей актуальности.
Как научиться быстро считать в уме? Предложенные в данной статье методики помогут вам развить феноменальный талант быстрого счета.
Три составляющих успешного обучения
Учимся устно умножать на 11
Существует несколько простых способов умножения числа на 11.
Способ 1
При умножении 2-значного числа на 11, раздвинем цифры множителя.
Например (54 * 11):
5 _ 4 * 11=…
Теперь суммируем единицы и десятки, а полученный результат записываем в ответе:
5 (5+4) 4 * 11 = 5 (9) 4 = 594
Например (89 * 11):
8 _ (8+9) _9 = 8 _ (17) _ 9 = _ (8+1) _ 79 = 979
Способ 2
При умножении на 11 разложим число 11 на сумму: 10+1, и произведем умножение частей.
Например:
12 * 11 = 12 * (10+1) = 120 + 12 = 132
Так же и с 3-значными числами:
114 * 11 = 114 * (10+1) = 1140 + 114 = 1254
Умножаем на 9 и 11
Примеры:
15 * 9 = 15 * 10 – 15 = 150 — 15 = 135
57 * 11 = 57 * 10 + 57 = 570 + 57 = 627
Возведение в квадрат числа, заканчивающегося на 5
Достаточно простая методика. Умножаем десяток на самого себя +1, и дописываем «25» в конце.
Например (35 * 35):
35 * 35 = 3 * (3+1)_25 = 1225
Устное умножение на 5, 25, 50, 125
Умножить на 5 числа до 10-ти не составляет проблем
Давайте научимся так же легко умножать двузначные и трехзначные числа.
Способ 1
Разделим наш множитель на «2». Получилось целое число? Значит, добавим к нему в конце «0», если число поровну не делится – отбрасываем остаток и добавляем «5» в конце.
Например (1482 * 5):
1482 * 5 = (1482/2) _ (+0 или +5) = 741 _(+0) = 7410 – число делится на 2 без остатка
2269 * 5 = (2269/2) _ (+0 или +5) = 1134.5 _ (+5) = 11345 – число делится на 2 с остатком
Способ 2
Умножая число на 5, 25, 50, 125 можно использовать следующие формулы:
А * 5 = А * 10 / 2
А * 50 = А * 100 / 2
А * 25 = А * 100 / 4
А * 125 = А* 1000 / 8
Примеры:
44 * 5 = 44 * 10 / 2 = 440 / 2 = 220
24 * 50 = 24 * 100 / 2 = 2400 / 2 = 1200
26 * 25 = 26 * 100 / 4 = 2600 / 4 = 650
54 * 125 = 54 * 1000 / 8 = 54000 / 8 = 6750
Учимся устно умножать на 4
Достаточно простой метод, не требующий особых усилий.
Умножаем число на «2», а потом полученный результат снова умножаем на «2».
Например:
27 * 4 = 27 * 2 * 2 = 54 * 2 = 108
Вычисляем в уме 15 % от числа
Находим 10% от числа и добавляем ½ от 10%.
Например:
15% от 664 = (10% ) + (10% / 2) = 66.4 + 33.2 = 99.6
Умножаем в уме большие числа, одно из которых четное
Например:
48 * 125 = 24 * 250 = 12 * 500 = 6 * 1000 = 6000
Учимся делить на 5, 50, 25
Один простой прием поможет вам быстро делить в уме: умножим наше число на «2» и переместим запятую на одну цифру назад.
145 / 5 = 145 * 2 = 290 (смещаем запятую) = 29
1200 / 5 = 1200 * 2 = 2 400 (смещаем запятую) = 240
При делении на 50, 25, удобно воспользоваться формулами:
А / 50 = А * 2 / 100
А / 25 – А * 4 / 100
Примеры:
2350 / 50 = 2350 * 2 / 100 = 4700 / 100 = 47
2600 / 25 = 2600 * 4 / 100 = 10400 / 100 = 104
Вычитаем из 1000
Для того, чтобы вычесть число из 1000, отнимаем каждую цифру числа от «9», а последнюю цифру отнимаем от 10.
Например:
1000 – 248 = (9-2) _ (9-4) _ (10-8) = 752
Умножаем простые числа
Пример, умножим 7 на 8: 3 __ 2
7 8
8 – 3 = 5 _
3 * 2 = 6
Итог: 56
Умножаем числа от 10 до 20
Для того чтобы быстро в уме умножать числа от 10 до 20-ти, следует знать одну хитрость: к одному числу прибавим единицы другого, а сумму умножим на 10, к полученному результату добавим произведение единиц.
Пример:
13 * 15 = (13 + 5) * 10 + 3 * 5 = 180 + 15 = 195
Складываем и вычитаем натуральные числа
1. Если слагаемое увеличить на некоторое число, то это же число следует вычесть из полученной суммы.
Например:
650 + 346 = (650 + 346 + 4) – 4 = (650 + 350) – 2 = 1000 – 2 = 998
2. Если одно слагаемое уменьшить на некоторое число, а ко второму слагаемому это же число добавить, то сумма не изменится.
Например:
335 + 765 = (335 + 5) + (765 — 5) = 340 + 760 = 1100
3. Если к уменьшаемому и вычитаемому добавить одно и то же число, результат не изменится.
Например:
225 — 339 = (225 + 5) — (339 + 5) = 230 — 344 = 114
Умножаем числа с одинаковым количеством десятков, сумма единиц которых = 10
Как умножить на число 9, 99, 999?
Для этого просто добавим недостающие единицы и произведем вычисление.
Пример:
154 * 99 = 154 * (100 — 1) = 15400 — 154 = 15246
Складываем близкие по величине числа
Производим вычисление ряда чисел, близких по величине
Их можно разложить, и сложить частями.
Например:
19 + 22 + 23 + 21+ 24 + 17=…
Итог: 20 * 6 + (2-1+3+1+4-3) = 120 + 6 = 126
Надеемся, что наши советы помогут вам освоить приемы быстрого счета в уме. Следует помнить, что теория – это лишь 20 % успеха. Остальные 80% — ваше желание и практика.
Несколько полезных советов
Зачем нужен устный счет, если на дворе 21 век, и всевозможные гаджеты способны едва ли не молниеносно производить любые арифметические операции? Можно даже не тыкать в смартфон пальцем, а дать голосовую команду – и немедленно получить правильный ответ. Сейчас это успешно проделывают даже школьники младших классов, которым лень самостоятельно делить, умножать, складывать и вычитать.
Но у этой медали есть и обратная сторона: ученые предупреждают, что если мозг не тренировать, не нагружать работой и облегчать ему задачи, он начинает лениться, его мыслительные способности снижаются. Точно так же без физических тренировок слабеют и наши мышцы.
О пользе математики говорил еще Михаил Васильевич Ломоносов, называющий ее прекраснейшей из наук: «Математику уже за то любить надо, что она ум в порядок приводит».
Устный счет развивает внимание, память, быстроту реакции. Недаром появляются все новые и новые методики быстрого устного счета, предназначенные и для детей, и для взрослых. Одна из них – японская система устного счета, в которой используются древние японские счеты «соробан».
Любопытно, что всего за два года ученики таких школ (сюда принимают детей в возрасте 4–11 лет) учатся совершать арифметические действия с 2-значными, а то и 3-значными цифрами. Малыши, не знающие таблицы умножения, здесь умеют умножать. Они складывают и вычитают большие числа, не записывая их столбик. Но, конечно же, цель обучения – это сбалансированное развитие правого и левого полушарий головного мозга.
Овладеть устным счетом можно и с помощью задачника «1001 задача для умственного счета в школе», составленного еще в 19 веке сельским учителем и известным педагогом-просветителем Сергеем Александровичем Рачинским. В пользу этого задачника говорит тот факт, что он выдержал несколько изданий. Эту книгу можно найти и скачать в Интернете.
Люди, практикующиеся в быстром счете, рекомендуют книгу Якова Трахтенберга «Система быстрого счета». История создания этой системы весьма необычна. Чтобы выжить в концлагере, куда его отправили нацисты в 1941 г., и не утратить ясность ума, цюрихский профессор математики занялся разработкой алгоритмов математических действий, позволяющих быстро считать в уме. А после войны написал книгу, в которой система быстрого счета изложена настолько понятно и доступно, что она и сейчас пользуется спросом.
Хорошие отзывы и о книге Якова Перельмана «Быстрый счет. Тридцать простых примеров устного счета». Главы этой книге посвящены умножению на однозначное и двузначное число, в частности умножению на 4 и 8, 5 и 25, на 11/2, 11/4, ѕ, делению на 15, возведению в квадрат, вычислениям по формуле.
Простейшие способы устного счета
Быстрее овладеют этим навыком люди, обладающие определенными способностями, а именно: способностью к логическому мышлению, умением сконцентрироваться и сохранять в краткосрочной памяти несколько образов одновременно.
Ну и, конечно же, не обойтись без регулярных тренировок!
В числе самых распространенных приемов быстрого счета следующие:
Умножение двузначного числа на однозначное.
Умножить двузначное число на однозначное проще всего, разложив его на две составляющие. Например, 45 — на 40 и 5. Далее каждую составляющую умножаем на нужное число, к примеру на 7, отдельно. Получаем: 40 × 7 = 280; 5 × 7 = 35. Затем получившиеся результаты складываем: 280 + 35 = 315.
Умножение трехзначного числа.
Умножать в уме трехзначное число также намного проще, если разложить его на составляющие, но представив множимое так, чтобы с ним легче было производить математические действия. Например, нам нужно умножить 137 на 5.
Представляем 137 как 140 − 3. То есть получается, что мы теперь должны умножить на 5 не 137, а 140 − 3. Или (140 − 3) х 5.
Ну а дальше каждую часть умножаем отдельно: 140 × 5 − 3 × 5 = 700 − 15 = 685.
Зная таблицу умножения в пределах 19 х 9, можно сосчитать еще быстрее. Раскладываем число 137 на 130 и 7. Далее умножаем на 5 сначала 130, а затем 7, и результаты складываем. То есть 137 × 5 = 130 × 5 + 7 × 5 = 650 + 35 = 685.
Разложить можно не только множимое, но и множитель. Например, нам нужно умножить 235 на 6. Шесть мы получаем, умножив 2 на 3. Таким образом, 235 сначала множим на 2 и получаем 470, а затем 470 умножаем на 3. Итого 1410.
Это же действие можно произвести иначе, представив 235 как 200 и 35. Получается 235 × 6 = (200 + 35) × 6 = 200 × 6 + 35 × 6 = 1200 + 210 = 1410.
Таким же образом, раскладывая числа на составляющие, можно выполнять сложение, вычитание и деление.
Умножение на 10-ть.
Как умножать на 10, известно всем: просто приписать к множимому нуль. Например, 15 × 10 = 150. Исходя из этого, не менее просто умножать и на 9. Сначала к множимому припишем 0, то есть умножим его на 10, а затем от получившегося числа отнимем множимое: 150 × 9 = 150 × 10 = 1500 − 150 = 1 350.
Умножение на 5-ть.
Легко умножать и на 5. Следует всего лишь умножить нужно число на 10, а получившийся результат разделить на 2.
Умножение на 11-ть.
Интересно умножать двузначные числа на 11. Возьмем, к примеру, 18. Мысленно раздвинем 1 и 8, и между ними впишем сумму этих чисел: 1 + 8. У нас получится 1 (1 + 8) 8. Или 198.
Умножение на 1,5.
При необходимости умножить какое-нибудь число на 1,5 делим его на два и прибавляем получившуюся половинку к целому: 24 × 1,5 = 24 / 2 + 24 = 36.
Это лишь самые простые способы устного счета, с помощью которых мы можем тренировать свой мозг в быту. Например, подсчитывать стоимость покупок, стоя в очереди в кассу. Или же совершать математические действия с цифрами на номерах проезжающих мимо машин. Те же, кто любит «играться» с цифрами и хочет развить свои мыслительные способности, могут обратиться к книгам вышеупомянутых авторов.
Дальше — интереснее!
Не все мы выдающиеся математики. На кого-то эта наука наводит ужас при одном ее упоминании. Возможно, следующие советы помогут вам и вы сможете быстрее делать математические вычисления в уме.
Умножение на 11
Берем двузначное исходное число и мысленно представляем промежуток между двумя этими цифрами (для примера возьмем число 52):
5_2
Теперь складываем эти два числа, записав их еще и по середине:
5_(5+2)_2
Если при сложении чисел в скобках получается двузначное число, то вторую цифру запомните, а вторую прибавьте к первому числу:
9_(9+9)_9
(9+1)_8_9
10_8_9
1089
Это правило работает всегда!
Быстрое возведение в квадрат
Пример:
(2x(2+1)) * 25=252
2 x 3 = 6
625
Умножение на 5
Пример:
2682 x 5 = (2682 / 2) * 5 и 0
2682 / 2 = 1341 (целое число, поэтому добавляем 0)
13410
Еще пример:
5887 x 5
2943,5 (дробное число (опускаем запятую, добавляем 5)
29435
Умножение на 9
Умножение на 4
Хитрость этого способа состоит в том, что нужно просто умножить число на 2, а потом снова на 2:
58 x 4 = (58 x 2) + (58 x 2) = (116) + (116) = 232
Как рассчитать чаевые
Сложное умножение
Если вам нужно перемножить большие числа, причем одно из них четное, вы можете просто перегруппировать их:
32 x 125 все равно, что:
16 x 250 все равно, что:
8 x 500 все равно, что:
4 x 1000 = 4,000
Деление на 5
Пример:
195 / 5
195 * 2 = 390
Переносим запятую: 39,0 или просто 39.
Еще пример:
2978 / 5
2978 * 2 = 5956
595,6
Вычитание из 1000
Отнимите от 9 все цифры, кроме последней. А последнюю цифру отнимите от 10:
1000 — 648
Систематизированные правила умножения
Как высчитать проценты?
Пример:
необходимо вычислить 7% от 300.
Выходит, что 7% от 100 будет 7.
8% от 100 = 8.
35,73% от 100 = 35,73
Вернемся к нашему примеру (7% от 300).
7% от первой сотни = 7
7% от второй сотни — тоже 7
7% от третьей сотни — так же 7.
Итак, 7 + 7 + 7 = 21.
Если 8% от 100 = 8, то 8% от 50 = 4 (половина от 8).
Еще примеры:
8% от 200 = 8 + 8 = 16.
8% от 250 = 8 + 8 + 4 = 20
8% от 25 = 2,0 (передвигаем запятую влево)
15% от 300 = 15+15+15 =45
15% от 350 = 15+15+15+7,5 = 52,5
Что еще стоит знать
Как бы стыдно мне не было, но к своим 30 годам я поняла, что очень плохо считаю в уме элементарные числа и трачу на это много времени. Этот недостаток я решила исправить и нашла на просторах интернета инструменты, которые помогли мне научиться считать в уме.
Вычитание 7,8,9 Чтобы вычесть 9 из любого числа, нужно вычесть из него 10 и прибавить 1. Чтобы вычесть из любого числа 8, нужно вычесть из него 10 и прибавить 2. Чтобы вычесть 7 из любого числа, нужно вычесть из него 10 и прибавить 3. Если обычно вы считаете по другому, то для лучшего результата вам нужно привыкнуть к этому новому способу.
Деление 1000 на 2,4,8,16. И наконец, полезно знать деление чисел, кратных 10 на числа, кратные двум:
Как быстро умножать двузначные числа в уме?
Умение мгновенно считать в уме может стать бесценным подспорьем в работе и в условиях скоростных темпов жизни современного человека.
Как быстро умножать большие числа, как овладеть такими полезными навыками? У большинства вызывает затруднения устное перемножение двузначных чисел на однозначные. А о сложных арифметических расчетах и говорить нечего. Но при желании способности, заложенные в каждом человеке, можно развить. Регулярные тренировки, немного усилий и применение, разработанных учеными, эффективных методик позволят достичь потрясающих результатов.
Выбираем традиционные методы
Проверенные десятилетиями способы перемножения двузначных чисел не теряют своей актуальности. Простейшие приемы помогают миллионам обычных школьников, учащихся специализированных ВУЗов и лицеев, а также людям, занимающимся саморазвитием, усовершенствовать вычислительное мастерство.
Умножение с помощью разложения чисел
Наиболее легким способом, как быстро научиться умножать большие числа в уме, является перемножение десятков и единиц. Сначала умножаются десятки двух чисел, затем поочередно единицы и десятки. Четыре полученных числа суммируются. Для использования этого метода важно уметь запоминать результаты перемножения и складывать их в уме.
Например, для умножения 38 на 57 необходимо:
Естественно, необходимо отлично знать таблицу умножения, так как быстро умножать в уме этим способом не удастся без соответствующих умений.
Умножение в столбик в уме
Визуальное представление привычного перемножения в столбик многие используют при расчетах. Этот метод подойдет тем, кто умеет надолго запоминать вспомогательные числа и выполнять с ними арифметические действия. Но процесс значительно упрощается, если вы научились, как быстро умножать двузначные числа на однозначные. Для перемножения, например, 47*81 нужно:
Запоминать промежуточные результаты поможет проговаривание их вслух с одновременным суммированием в уме. Несмотря на сложность мысленных вычислений, после непродолжительных тренировок этот метод станет вашим любимым.
Умножение на 11
Это, пожалуй, самый простой способ, который используется для умножения любых двузначных чисел на 11.
Достаточно между цифрами множителя вставить их сумму:
13*11 = 1(1+3)3 = 143
Если в скобках получается число больше 10, то к первой цифре добавляется единица, а из суммы в скобках вычитается 10.
28*11 = 2 (2+8) 8 = 308
Главное — тренироваться непрерывно!
Очень удобно перемножать числа, близкие к 100 разложением их на составляющие. Например, необходимо умножить 87 на 91.
Это самые простые способы перемножения. После многократного их применения, доведения вычислений до автоматизма можно осваивать более сложные техники. И через некоторое время проблема, как быстро умножить двузначные числа перестанет вас волновать, а память и логика существенно улучшатся.