хелат меди это что такое

Какие минералы лучше усваиваются?

Для существования человеческому организму необходимо огромное количество полезных веществ. Цинк, магний, медь, железо, кальций – это не просто элементы периодической таблицы Менделеева из школьной программы по химии. Это важнейшие минералы для существования и правильного функционирования всего человеческого организма.

Чтобы наши иммунные клетки могли защитить нас от вражеского вторжения вирусов необходим цинк. Магний – ключевой элемент нашей нервной системы и мышц. Прочные кости и крепкие зубы – это заслуга кальция. Без железа падает уровень гемоглобина, что может привести к развитию анемии. А медь поддерживает нашу красоту и молодость за счет сохранения цвета волос и участию в выработке коллагена и эластина.

С современным питанием все эти минералы попадают в наш организм в ничтожно малых количествах. Из витаминных комплексов они практически не усваиваются и даже могут вызывать побочные эффекты… Как же быть? Есть ли решение этой проблемы, или человек обречен с возрастом испытывать все больший дефицит этих минералов?

хелат меди это что такое. Смотреть фото хелат меди это что такое. Смотреть картинку хелат меди это что такое. Картинка про хелат меди это что такое. Фото хелат меди это что такое

Хелаты – новое слово в науке

Настоящий фурор во всем европейском научном сообществе произвели хелатные формы минералов. Было известно, что в отличие от минералов организм очень легко усваивает аминокислоты. Это подтолкнуло ученых присоединить молекулу минерала к аминокислоте. И это действительно сработало. Такая форма получила название – хелатная.

Степень усвоения хелатов в разы выше, чем у неорганических форм, таких как карбонаты, цитраты и т.д. В такой форме минералы усваиваются максимально.

А самое главное то, что организм очень легко переносит хелатные минералы в больших дозировках. Они не вызывают побочного нарушения пищеварения и вздутия, так как не влияют на уровень кислотности желудка, а также усваиваются без побочных отложений в сосудах, почках, суставах и даже разрешены беременным и кормящим.

Кальций хелат Эвалар – быстро восполняет дефицит кальция в организме, обеспечивая его максимальное усвоение. Кроме того, кальций в хелатной форме не откладывается на стенках сосудов, в почках, а идет напрямую в кости. Кальций хелат Эвалар способствует поддержанию нормального состояния костной ткани, зубов, улучшению состояния сердца и сосудов.

Как принимать минералы?

Если вы решили принимать сразу несколько минералов необходимо знать, какие минералы сочетаются между собой, а какие категорически нельзя совмещать во время одного приема. Кальций и магний хорошо сочетаются. Оптимально принимать их вечером, так как кальций лучше усваивается ночью, а магний улучшает сон. Железо и медь следует принимать утром, а цинк отлично усваивается в обеденное время.

хелат меди это что такое. Смотреть фото хелат меди это что такое. Смотреть картинку хелат меди это что такое. Картинка про хелат меди это что такое. Фото хелат меди это что такое

Усваивайте минералы по максимуму! Выбирайте хелатные формы от Эвалар, ведь это:

• Максимальная степень усвоения в отличие от других форм

Источник

хелат меди Cu, хелаты применение хелатных удобрений

Данный элемент влияет на прочность клеточных стенок растений, а также на содержание сахара и срок хранения плодов фруктовых деревьев. Он играет роль в нескольких ферментных процессах, включая образование хлорофилла.

хелатное удобрение, хелат меди chelating copper

Минеральные удобрения хелаты с металлическими микроэлементами медью/ Fertilizers chelates with metal trace elements

Хелатная форма меди chelating copper: водорастворимое удобрение с медью, варианты фасовки хелата

Обратившись в компанию «ХИМСНАБ-СПБ» вы можете заказать фасовку хелатных удобрений (chelate fertilizers) в зависимости от объема закупки.

дефицит меди у растений, недостаток элемента медь

Признаки дефицита проявляются у чувствительных к недостатку меди культур: пшеницы, ячменя, овса, подсолнечника, льна, шпината, яблони, сливы, груши, цитрусовых.

У злаков заторможен рост, растения светло-зеленые, верхние листья сухие скрученные. Колосья и метелки недоразвиты, цветки стерильны.

симптомы дефицита меди Cu у растений, нехватка железа в почве, грунте

искривленные листья, хлорозcurved leaves, chlorosis
истончение листьевthinning leaves
низкий уровень белкаlow protein
пониженная сопротивляемость грибкампониженная сопротивляемость грибкам

Со временем дефицит меди Cu у растения и других микроэлементов может вызвать замедление роста, уменьшение урожайности культуры и сокращение продолжительности жизни. Критический уровень дефицита меди в вегетативных частях растений составляет 1-5 мг/кг сухой массы.

У однодольных наблюдается свертывание молодых листьев около средней жилки, потеря тургора и увядание растений. Листья ломкие, кончики листьев от желто-белой до желто-зеленой окраски. Задержка фазы стеблевания, образование колосьев слабое, колосья пустые и белые. У двудольных могут образоваться желто-коричневые некротические пятна, генеративное развитие замедляется. Корни длинные и тонкие, с белыми боковыми корешками.

доступность и усвоение меди растениями, даже при высоком содержании элемента в почве

Растения индикаторы (на которых признаки дефицита)

пшеницаwheat
овесoats
ячменьbarley
турнепс,turnip
бобыbeans
травыherbs
салат,lettuce
лук,onions
морковьcarrots
цветная капустаcauliflower
редькаradish
столовая свеклаred beet
свеклаred beet
шпинатgarlic
чеснокgarlic
укропdill
грушаpear
яблоняapple
сливаслива
абрикосapricot

Проявляются у растений на следующих почвах

Почвы, на которых чаще всего встречается недостаток меди

С высоким содержанием органического вещества
кислые почвы
песчаные почвы
торфяные почвы
рекультивированные почвы

Решение проблемы в период вегетации. Типичные анатомические изменения, индуцированные Cu-дефицитом, связаны с нарушениями лигнификации клеточных стенок.

В наибольшей степени эти изменения отмечаются в склеренхиме клеток стебля. Недостаточная лигнификация сосудов ксилемы, обусловленная подавлением активности полифенолоксидаз, проявляется даже при незначительном дефиците меди. Этот показатель рекомендуют использовать в целях растительной диагностики. При недостатке меди снижается активность ключевых ферментов, участвующих в процессах фотосинтеза и дыхания. Низкое содержание пластоцианина у растений обусловливает значительно большее уменьшение активности ФС 1 по сравнению с ФС 2. При остром дефиците меди в ФС 2 изменяется состав полипептидов и липидов, что проявляется в доминировании ненасыщенных жирных кислот. Нарушения фотосинтеза сопровождаются снижением в растениях уровня растворимых углеводов. При низком содержании меди нарушается формирование пыльцы, т. е. возникает стерильность.

У бобовых, кроме того, подавляется N2-фиксация. Формирование семян и зерен страдает от недостатка меди больше, чем вегетативный рост. Иными словами, для нормального образования генеративных органов необходимы более высокие дозы меди, чем для формирования вегетативных частей растений. Критическая стадия — микроспорогенез. Вызываемые недостатком меди нарушения в фотосинтезе и дыхании отражаются на энергетическом обмене растений, что вызывает у растений каскад вторичных физиологических эффектов.

При остром дефиците колосья и метелки не развиваются вовсе. У подсолнечника образуется мелкое, искривленное соцветие, листья верхнего яруса бледные. У льна наблюдаются укороченные междоузлия, розеточность листьев, склонность к полеганию. Из плодовых индикатором на недостаток меди выступает слива.

молодые листья в условиях недостатка меди желтеют, наблюдается ранний листопад, кора растрескивается, образуются натеки камеди, плодоношение слабое. У яблони увядают кончики побегов, образуются пучки новых побегов («ведьмины метлы»), рано опадают верхние листья.

Цитрусовые при остром дефиците меди практически не плодоносят, при умеренном недостатке проявляются симптомы, характерные для сливы и яблони.

Растения устойчивы к недостатку меди

применение хелатные медные удобрений для растений, внесение хелата меди

Как вносить хелатные медные удобрения в качестве подкормки и питания растений.
Как удобрять хелатом меди, приготовление раствора, нормы внесения питательных веществ.

Источник

Хелаты: как в них разобраться?

хелат меди это что такое. Смотреть фото хелат меди это что такое. Смотреть картинку хелат меди это что такое. Картинка про хелат меди это что такое. Фото хелат меди это что такое

На рынке присутствуют разнообразные формы комплексных соединений металлов, используемых в кормлении животных. Все эти разнообразные формы называют «органическими микроэлементами», поскольку входящие в их состав микроэлементы образуют комплексы, или другие типы химических соединений, с органическими молекулами.

Химические процессы комплексообразования, или образования хелатов, понимаются по-разному различными специалистами отрасли кормопроизводства, что приводит к возникновению путаницы в терминах и интерпретации свойств продуктов. Часто встречаются такие термины, как «комплекс металла и аминокислот», «хелат металла и аминокислот», «комплекс металла с полисахаридом», «протеинат металла», однако официальные определения этих терминов расплывчаты и не проясняют ситуацию. В качестве примера в Таблице 1 приведены различные определения органических микроэлементов, используемых в сельском хозяйстве, в формулировках Ассоциации американских контролёров качества кормов (AAFCO, 1998).

Таблица 1. Органические комплексы минералов – определения терминов в формулировках AAFCO.

Комплекс металла и аминокислоты – продукт, образующийся при формировании комплекса между растворимой солью металла и аминокислотой.

Чтобы разобраться в запутанных определениях, характеризующих химические и физические свойства микроэлементов, прежде всего, необходимо выявить отличия между терминами «комплекс» и «хелат».

Комплексы или хелаты

Термин «комплекс» может использоваться при описании соединений, образующихся при взаимодействии иона металла с молекулой или ионом (лигандом), которые обладают свободной парой электронов. Такие ионы металлов связываются с лигандом посредством атомов-доноров, например, кислорода, азота или серы. Лиганды, обладающие только одним атомом-донором, называются монодентатными, а лиганды, обладающие двумя и более атомами-донорами, называеются би-, три- или тетрадентатными, также их иногда называют полидентатными.

Аминокислоты являются бидентатными лигандами, образующими связи с ионами металла посредством кислорода карбоксильной группы и азота аминогруппы.

Этилендиаминтетрауксусная кислота (ЭДТА) является примером гексадентатного лиганда, который содержит шесть атомов-доноров. ЭДТА образует очень прочные комплексы с большинством ионов металлов, и не очень подходит для образования хелатов минералов, поскольку биологическая доступность таких комплексов невысока.

Хотя могут образовываться хелаты, содержащие четыре, пять, шесть или семь колец, установлено, что наиболее стабильными являются хелаты, содержащие пять колец.

Также необходимо помнить о том, что хотя хелаты и являются комплексами, не все комплексы являются хелатами. Несмотря на простоту теории, объясняющей образование хелатов, необходимо строгое соблюдение множества условий для получения стабильного хелата минерала.

Лиганд должен содержать два атома, способных образовывать связи с ионом металла.

Лиганд должен образовывать гетероциклическое кольцо, причём металл должен располагаться «в конце» этого кольца.

Образование хелата металла должно быть пространственно (стерически) возможно. Для достижения стабильности необходимо соблюдать соотношение количества лиганда к минералу.

Истинные хелаты имеют «кольцевую структуру», образованную ковалентно-координационной связью между аминной и карбоксильной группами аминокислоты и ионом металла.

Как правило, хелаты образуются в результате реакции между неорганическими солями минералов, с приготовленной при помощи ферментов смесью аминокислот и небольших пептидов в контролируемых условиях. Такие аминокислотные и пептидные лиганды связываются с ионом металла не в одной точке, а в нескольких, в результате чего атом металла становится частью биологически стабильной кольцевой структуры. Аминокислоты и продукты ферментативного разрушения белков, например, небольшие пептиды, являются идеальными лигандами, поскольку они обладают как минимум двумя функциональными группами (аминной и гидроксильной), необходимыми для образования кольцевой структуры с минералом. Только «переходные элементы», например, медь, железо, марганец и цинк обладают необходимыми физико-химическими характеристиками, позволяющими им образовывать ковалентно-координационные связи с аминокислотами и пептидами с образованием биологически стабильных комплексов.

Аминокислоты и пептиды в качестве лигандов

Существуют различные мнения относительно преимуществ использования аминокислот в сравнении с пептидами при образовании хелатов минералов, ещё больше споров имеется по вопросу биологической доступности таких продуктов. Мы уже рассмотрели общие условия, необходимые для образования биологически стабильных хелатов минералов, однако следует также учитывать и другие факторы, оказывающие влияние на образование хелатов, основными из этих факторов являются:

Очевидно, что такой сложный химический феномен не следует чрезмерно упрощать. Однако чтобы прояснить ситуацию касательно преимуществ аминокислот либо пептидов в процессе образования хелатов минералов, мы рассмотрим факторы, влияющие на состояние равновесия и стабильность таких комплексов.

При растворении в воде соли металла, например, сульфата меди (II), с добавлением аминокислоты в качестве бидентатного лиганда, образуется ряд комплексов, каждый из которых обладает собственной константой стабильности, которая зависит от рН раствора. Это показано на Рисунке 1 (реакция сульфата меди (II) с глицином). Из данных, показанных на этом рисунке можно сделать некоторые важные выводы:

Рисунок 1. График изменения содержания меди, включённой в состав различных соединений, при изменении рН в растворе, содержащем медь (II) (0,001М) и глицин (0,002М). Горизонтальная ось: рН. Вертикальная ось: % Cu++

У различных ионов металлов различные константы стабильности. Поэтому, количество металла, входящего в состав конкретного соединения, зависит не только от величины рН раствора, но и от константы стабильности комплекса.

Стабильность содержащего металл комплекса зависит как от свойств металла, так и от свойств лиганда. Увеличение заряда иона, уменьшение размера и увеличение аффинности электронов способствует большей стабильности. На стабильность комплексов влияют также некоторые характеристики лигандов: (1) щёлочность лиганда, (2) количество металло-хелатных колец на единицу лиганда, (3) размер хелатного кольца, (4) пространственные эффекты, (5) резонансные эффекты и (6) атом лиганда. Поскольку комплексные соединения образуются в результате кислотно-основных реакций, как правило, более щелочные лиганды образуют более стабильные комплексы. Также большое значение имеет размер хелатного кольца.

Ещё глубже проанализировав Рисунок 1, можно заметить наличие существенных отличий между относительной стабильностью хелатов металлов, образованных аминокислотами и стабильностью протеинатов металлов. Поскольку протеинат металла является продуктом реакции хелатообразования между растворимой солью и аминокислотами и/или частично гидролизованным белком, можно предположить, что для конкретного иона металла количество графиков, характеризующих образование различных соединений, в состав которых входит металл, при образовании протеината, будет намного больше, чем при образовании хелата этого же металла с аминокислотой. Если считать график, отражающий распределение количества меди между различными соединениями, индикатором относительной стабильности при данной величине рН, и учитывать бесконечное количество комбинаций, возможных в результате взаимодействия как отдельных аминокислот, так и ди-, три- и даже тетрапептидов, то, теоретически, общая стабильность протеината в широком диапазоне рН должна быть намного больше, чем стабильность хелата данного металла с аминокислотой.

Очевидно, что в реальных условиях рассмотренные дополнительные факторы будут оказывать влияние на стабильность хелата. Однако можно ожидать, что протеинаты металлов будут обладать физико-химическими свойствами, необходимыми для сохранения постоянства характеристик при изменении рН.

Несмотря на наличие некоторой противоречивой информации, образование хелатов металлов – это не такой уж сложный процесс, в основе которого лежат фундаментальные законы химии. Мы можем выделить две формы истинных хелатов минералов, каждая из которых обладает определёнными химическими и биофизическими свойствами. Внимательно изучив факторы, влияющие на образование хелатов минералов, можно выявить различия между продуктами по показателю биологической стабильности и, следовательно, биологической доступности.

Источник

хелат меди это что такое. Смотреть фото хелат меди это что такое. Смотреть картинку хелат меди это что такое. Картинка про хелат меди это что такое. Фото хелат меди это что такое
Докладчик
Каюмов Спартак Фанилович
к.м.н., президент Союза трихологов


Взаимосвязь выпадения волос и дефицита микроэлементов не так часто обсуждается на научных конференциях. Из всех дефицитов минералов только дефицит железа привлекает внимание отечественных трихологов. Однако, при обзоре научной литературы мы можем обнаружить, что цинк и медь играют большую роль в физиологии и патологии волос.

Медь. Основные положения

Молибден увеличивает потерю меди с мочой. Цинк в ионной форме может конкурировать с медью за всасывание.

В эксперименте дефицит меди непосредственно приводил к железодефицитной анемии вследствие нарушения абсорбции железа.

(Reeves P. G., DeMars L. C. Copper deficiency reduces iron absorption and biological half-life in male rats. J. Nutr. 2004; 134 (8): 1953—1957)

Всасывание меди

Поступлению меди в энтероцит содействует транспортер меди и транспортер двухвалентных металлов. Уже на этом этапе возможна конкуренция минералов за транспорт (цинк, медь, кальций, железо и т.д.).

В организме человека содержится 70—100 мг меди.

Головной мозг и печень, составляющие только 5 % массы тела человека, содержат 25 % меди.

Основное место абсорбции меди — двенадцатиперстная кишка, меньшая ее часть всасывается в желудке и тонком кишечнике. Механизм всасывания меди еще не вполне изучен. При низком содержании меди в пище ее всасывание осуществляется активно, при высоком — посредством пассивной диффузии.

Медь в организме человека

Известные ферменты, содержащие в своем составе медь: аскорбиназа, тирозиназа, цитохромоксидаза, супероксиддисмутаза.

Медь также входит в состав:

фермента, который отвечает за выработку эластина, коллагена, соединительных белковых тканей;

гистаминаза, управляющего метаболизмом гистамина.

Медь, обладая противовоспалительным свойством, ослабляет симптомы аутоиммунных заболеваний, к примеру, ревматоидного артрита.

Обмен меди

В гепатоцитах медь связывается с церулоплазмином (ЦП), поступающим в кровь и содержащим 95 % общего количества меди сыворотки крови.

Роль церулоплазмина в транспорте меди не очень значительна в отличие от альбумина и транскупреина. Избыток меди выводится с желчью, лишь около 15 % меди реабсорбируются в кишечник.

Церулоплазмин

Биосинтез происходит в печени.

(Ващенко В. И. и авт.2006)

Роль церулоплазмина

Ферроксидазная – окисляет двухвалентное железо в трехвалентное, как и белок гефестин (6 атомов меди).

Церулоплазмин окисляет железо в плазме крови, а гефестин на мембранах энтероцитов.

Антиоксидантная функция

Антиоксидантное, но слабее, чем внутриклеточная супероксиддисмутаза (концентрация меди повышается в очагах воспаления и, если существует недостаток поступления меди, то это может привезти к усилению перекисного окисления липидов).

Причины дефицита меди

заболевание, связанное с мутацией гена ATP7A, ответственного за выработку аденозинтрифосфатазы, участвующей в транспорте меди из энтероцита в кровь

Анемия, связанная с дефицитом меди, была обнаружена у 20 % больных с установленным ранее диагнозом В 12-дефицитной анемии и получавших соответствующее лечение. Дефицит меди может сочетаться с дефицитом витамина В12. Вероятно, это обусловлено наличием общих причин.

Диагностика дефицита меди

Диагноз дефицита меди устанавливается на основании выявленного снижения концентрации меди и/или церулоплазмина в сыворотке крови.

По мнению E. Beutler (2007), результаты оценки концентрации меди в сыворотке крови более достоверны, чем данные определения концентрации церулоплазмина, являющегося белком острой фазы, концентрация которого повышается при инфекционных и воспалительных процессах, что обусловливает неспецифичность этого показателя для дефицита меди.

Однако некоторые авторы считают оценку концентрации церулоплазмина в сыворотке крови лучшим тестом для диагностики дефицита меди, т. к. во всех случаях дефицита меди он снижен.

Лечение дефицита меди

При дефиците меди, связанном с избыточным поступлением цинка в организм, для коррекции состояния больного может быть достаточно отмены препаратов цинка.

Для лечения дефицита меди используются сульфат, глюконат и хлорид меди.

Сульфат и глюконат применяются перорально.

Хлорид меди — внутривенно.

Имеется противоречивая информация об эффективности глюконата меди.

Некоторые авторы не рекомендуют использовать этот препарат из-за плохого всасывания, в то же время есть публикации, свидетельствующие об успешности применения глюконата меди у пациентов с ее дефицитом.

Больным назначается 2–10 мг элементарной меди в сутки в течение 3 мес.

В клинике Мейо используется следующая схема лечения: 1-я неделя — 8 мг элементарной меди в день, 2-я неделя — 6 мг, 3-я неделя — 4 мг, затем — по 2 мг в день.

Cu и ГА

Лечение: окись цинка по 50 мг три раза в день и о,5 % раствор сернокислой меди (по 15 капель 3 раза в день) в течение 20-30 дней. Перерыв 7 дней. Курс повторить 7 раз.

По материалам доклада Каюмова С. Ф., к.м.н., президента Союза трихологов на IV симпозиуме «Трихология для косметологов» в рамках XV Международной выставки профессиональной косметики и оборудования для салонов красоты INTERCHARM professional.

Источник

Анти-эйдж медь хелат таблетки 100 шт

Цены и наличие товара в аптеках ГОРЗДРАВ в Москве и МО

Срок годности3
Количество в упаковке100
Максимальная допустимая температура хранения, °С25

Описание

Медь хелат Эвалар способствует:

Снижению риска преждевременного появления седины, сохранению цвета волос.

Выработке коллагена и эластина, поддержанию тонуса и молодости кожи.

Нормализации уровня гемоглобина, укреплению стенок кровеносных сосудов.

Улучшению здоровья мозга и глаз.

Укреплению иммунитета, костей суставов.

Состав

Целлюлоза микрокристаллическая (носитель), компоненты пленочного покрытия (пищевые добавки), гидроксипропилметилцеллюлоза (загуститель), полиэтиленгликоль (глазирователь), гидроксипропилметилцеллюлоза (загуститель), меди аминокислотный хелат (меди бисглицинат), диоксид кремния аморфный и кальция стеарат (агенты антислеживающие), кроскарамеллоза (носитель).

Показания

В качестве дополнительного источника меди.

Противопоказания

Индивидуальная непереносимость компонентов, беременность, кормление грудью.

Меры предосторожности

Перед применением рекомендуется проконсультироваться с врачом.

Применение при беременности и кормлении грудью

Препарат противопоказан к применению при беременности и в период лактации.

Способ применения и дозы

Условия хранения

Хранить в обычных условиях, в сухом месте. Хранить в недоступном для детей месте.

© gorzdrav.org, 2021. ООО «АПТЕКА-А.в.е-1», ИНН 7714844316, ОГРН 1117746529691, Юридический адрес: 121609, г. Москва, ул. Осенняя, д.23, помещение I, комната 6

Продажа и доставка безрецептурных лекарственных препаратов для медицинского применения осуществляется Обществом с ограниченной ответственностью «АПТЕКА-А.в.е-1» (ОГРН 1117746529691, ИНН 7714844316, адрес: 121609, г. Москва, ул. Осенняя, д.23, помещение I, комната 6) в соответствии с Правилами осуществления розничной торговли лекарственными препаратами для медицинского применения дистанционным способом (утв. постановлением Правительства Российской Федерации от 16 мая 2020 г. № 697) на основании Разрешения на осуществление розничной торговли лекарственными препаратами для медицинского применения дистанционным способом № ДТ-77-000018 от 01.06.2020 г., выданным Территориальным органом Росздравнадзора по г. Москве и Московской области. Доставка лекарственных препаратов для медицинского применения, отпускаемых по рецепту врача, не осуществляется.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *