формат дайком что такое
DICOM
DICOM (англ. Digital Imaging and Communications in Medicine ) — отраслевой стандарт создания, хранения, передачи и визуализации медицинских изображений и документов обследованных пациентов.
Содержание
DICOM Standard
DICOM опирается на ISO-стандарт OSI, поддерживается основными производителями медицинского оборудования и медицинского программного обеспечения.
Стандарт DICOM, разрабатываемый Национальной ассоциацией производителей электронного оборудования (National Electrical Manufacturers Association), позволяет создавать, хранить, передавать и печатать отдельные кадры изображения, серии кадров, информацию о пациенте, исследовании, оборудовании, учреждениях, медицинском персонале, производящем обследование, и т. п.
Стандартом DICOM определено два информационных уровня:
DICOM File
DICOM File представляет собой объектно-ориентированный файл с теговой организацией. Информационная модель стандарта DICOM для DICOM файла четырёхступенчатая:
Файловый уровень стандарта DICOM 3.0 редакции 2008 года описывает:
DICOM Network Protocol
DICOM Network Protocol использует TCP/IP для передачи медицинской информации от медицинского оборудования в PACS-систему (Picture Archiving and Communication System) и для связи между PACS-системами. Протокол трёхуровневый — нижний, сразу над TCP — DUL (DICOM Upper Layer); над ним — сервисы: DIMSE (DICOM Message protocol) и ACSE (Association Control protocol — standard OSI protocol); и выше DICOM Application Interface. Над ними расположено приложение — Medical Imaging Application.
Стандарт DICOM позволяет производить интеграцию медицинского оборудования разных производителей, включая DICOM-сканеры, DICOM-серверы, автоматизированные рабочие места и DICOM принтеры в единую радиологическую (англ. Radiology information system ) или клиническую информационную систему (англ. Hospital information system ).
Стандарт DICOM включает в себя ряд сетевых (основных) сервисов:
Стандарт DICOM включает в себя основные сетевые команды, каждая из которых осуществляет как запрос (request) — в основном отправляет «клиент» (Service Class User, SCU), так и ответ (response) — в основном отвечает «сервер» (Service Class Provider, SCP):
Файл формата DICOM открывается специальными программами. Чтобы открыть данный формат, скачайте одну из предложенных программ.
Чем открыть файл в формате DICOM
Файл с расширением DICOM представляет собой полную аналогию DCM формата. Расширения DICOM и DCM – разработка корпорации NEMA (National Electrical Manufacturers Association), специализирующейся на разработке форматов передачи, хранения и просмотра медицинских изображений.
DICOM Image File – медицинский формат представления графических изображений и коммуникационных линий связи. Объектами стандартизации формата DICOM являются результаты проведения диагностики пациента: обследование с применением ультразвукового диапазона частот, компьютерная/резонансная томография, маммография, УЗИ, рентгенография и.т.п. Помимо графических данных, файл DCM может содержать персональную информацию, благодаря которой представляется возможность идентифицировать пациента и сопоставить изображение с конкретным субъектом.
Программы для открытия DICOM
Создание, загрузка и редактирование файла с расширением DICOM возможно в большинстве графических редакторов. Также, с помощью некоторых специализированных программ можно открыть МРТ снимок или посмотреть КТ.
Самое широкое распространение среди них получили следующие программные комплексы:
Каждая из вышеперечисленных графических систем обладает своим уникальным набором инструментов, позволяющих произвести редактирование изображения медицинских диагностических исследований.
Конвертация DICOM в другие форматы
Конвертация файла DICOM (графическое цифровое изображение) в другой формат представления данных предусмотрена в следующих вариациях:
Почему именно DICOM и в чем его достоинства?
Всестороннее диагностическое обследование пациента невозможно без качественно сделанных снимков. Формат DICOM позволяет осуществлять хранение/передачу/обработку графической информации и сопоставлять ее с персональными данными каждого пациента.
Изображение, создаваемое в формате Digital Imaging and Communications in Medicine (DICOM), который был разработан компанией NEMA (National Electrical Manufacturers Association) для обмена и просмотра медицинских изображений, таких как сканированные изображения CT, MRI и изображения ультразвука.
Файлы DICOM могут также содержать данные идентификации для пациентов таким образом, что изображение связано с определенным человеком.
Чем открыть файл в формате DICOM (DICOM Image File)
DICOM Viewer изнутри. Функциональные возможности
Добрый день, хабрасообщество. Мне хотелось бы продолжить рассмотрение аспектов реализации DICOM Viewer’а, и сегодня речь пойдёт о функциональных возможностях.
Инструментарий в 2D
Мультипланарная реконструкция (MPR)
Мультипланарная реконструкция позволяет создавать изображения из оригинальной плоскости в аксиальную, фронтальную, сагиттальную или произвольную плоскости. Для того чтобы построить MPR, необходимо построить объёмную 3D-модель и «разрезать» её в нужных плоскостях. Как правило, наилучшее качество MPR получается при компьютерной томографии(КТ), потому что в случае КТ можно создать 3D модель с разрешением, одинаковым во всех плоскостях. Поэтому выходное MPR получается с таким же разрешением, какое было у исходных изображений, полученных из КТ. Хотя бывают и МРТ с хорошим разрешением. Вот пример мультипланарной реконструкции:
Зелёным — аксиальная плоскость (слева вверху);
Красным — фронтальная плоскость (справа вверху);
Синим — сагиттальная плоскость (слева внизу);
Жёлтым — произвольная плоскость (справа внизу).
Положение правого нижнего снимка определяется жёлтой линией на виде сбоку (левый верхний). Это и есть изображение, полученное «разрезанием» 3D-модели наклонной плоскостью. Для получения значения плотности в конкретной точки плоскости используется трилинейная интерполяция.
Мультипланарная реконструкция по произвольной кривой (curved MPR)
То же самое, что и MPR, только вместо произвольной плоскости можно взять кривую, как показано на рисунке. Используется, например, в стоматологии для панорамного снимка зубов.
Каждая точка на кривой задаёт исходную точку трассировки, а нормаль к кривой в этой точке соответствует направлению оси Y в двухмерном изображении для этой точки. Оси X изображения соответствует сама кривая. То есть в каждой точке двухмерного изображения направление оси X – это касательная к кривой в соответствующей точке на кривой.
Проекция минимальной/средней/максимальной интенсивности (MIP)
Значения минимальной интенсивности показывают мягкие ткани. Тогда как значения максимальной интенсивности соответствуют наиболее ярким участкам трёхмерного объекта — это либо наиболее плотные ткани, либо органы, насыщенные контрастным веществом. Минимальное/среднее/максимальное значение интенсивности берётся в диапазоне (как показано на рисунке пунктирными линиями). Минимальное значение по всей модели будет принимать воздух.
Алгоритм вычисления MIP очень простой: выбираем плоскость на 3D модели — пусть будет плоскость XY. Потом проходим по оси Z и выбираем максимальное значение интенсивности на заданном диапазоне и отображаем его на 2D плоскости:
Изображение, полученное путём проекции средней интенсивности, близко к обычному рентгеновскому снимку:
Некоторые виды радиологических исследований не дают должного эффекта без использования контрастного препарата, поскольку не отражают некоторые виды тканей и органов. Это связано с тем, что в организме человека есть ткани, плотность которых примерно одинакова. Чтобы отличать такие ткани друг от друга, используют контрастное вещество, которое придаёт крови большую интенсивность. Также контрастное вещество используется для визуализации сосудов при ангиографии.
Режим DSA для ангиографии
Ангиография — это приём, позволяющий визуализировать системы кровотоков (вены и сосуды) различных органов. Для этого используется контрастное вещество, которое вводят в исследуемый орган, и рентгеновский аппарат, создающий снимки во время ввода контрастного вещества. Таким образом на выходе аппарата получается набор снимков с разной степенью визуализации кровотоков:
Однако вместе с венами и сосудами на снимках видны ткани других органов, например, черепа. Режим DSA (Digital subtraction angiography) позволяет визуализировать только кровотоки без каких-либо других тканей. Как это работает? Берём изображение серии, в котором кровотоки ещё не визуализированы контрастным веществом. Как правило, это первое изображение серии, так называемая маска:
Затем вычитаем это изображение из всех остальных изображений серии. Получаем следующее изображение:
На этом изображении хорошо видны кровотоки и практически не видны другие ткани, что позволяет проводить более точную диагностику.
Инструментарий в 3D
Инструмент куб видимости (Clipping Box)
Инструмент Clipping Box позволяет увидеть кости и анатомические ткани в разрезе, а также показать внутренние органы изнутри. Инструмент реализуется на уровне рендера, просто ограничивая область рейтрейсинга.
В реализации область рейтрейсинга ограничивается плоскостями с нормалями, направленными в сторону отсечения. То есть куб представляется шестью плоскостями.
Инструментарий редактирования объема — вырезание многоугольником
Инструмент похож на предыдущий и позволяет удалять фрагмент объёма под произвольным многоугольником:
Под вырезанием следует понимать зануление вокселей в 3D-моделе, попавших в область многоугольника.
Также есть инструмент «Ножницы», который позволяют удалять части 3D-модели по принципу связности. Реализация: при выделении объекта происходит циклический поиск близлежащих связных вокселей, пока все близлежащие воксели не будут просмотрены. Затем все просмотренные воксели удаляются.
Линейка в 3D
В 3D можно производить измерения органов под любым углом, что невозможно для некоторых случаех в 2D.
В режиме 3D можно также воспользоваться полигональной линейкой:
Инструментарий в 4D
Совмещение нескольких томографических серий в 3D (Fusion PET-CT)
ПЭТ-КТ (англ. PET-CT) относительно новая технология, являющаяся исследовательским методом ядерной медицины. Является методом мультимодальной томографии. Четвёртым измерением в данном случае является модальность (PET и CT). Предназначена в основном для обнаружения раковых опухолей.
CT помогает получить анатомическую структуру человеческого тела:
а PET показывает определённые области концентрации радиоактивного вещества, которая напрямую связана с интенсивностью кровоснабжения данной области.
PET получает картину биохимической активности, детектируя в теле человека радиоактивные изотопы. Радиоактивное вещество скапливается в органах, насыщенных кровью. Затем радиоактивное вещество претерпевает позитронный бета-распад. Образовавшиеся позитроны в дальнейшем аннигилирует с электронами из окружающей ткани, в результате чего происходит излучение пар гамма-лучей, которые и детектируются аппаратом, и затем на основе полученной информации строится 3D изображение.
Выбор радиоактивного изотопа определяет биологический процесс, который желают отследить в процессе исследования. Процессом может быть метаболизм, транспорт веществ и др. Поведение процесса в свою очередь является ключом к верной диагностике заболевания. На изображении выше у пациента в области печени видна опухоль.
Но основываясь на PET трудно понять, в какой части тела находится область с максимальной концентрацией радиоактивного вещества. При соединении геометрии тела (CT) и областей, насыщенных кровью с высокой концентрацией радиоактивного вещества (PET), получаем:
В качестве радиоактивного вещества для PET применяются радиоактивные изотопы с разными периодами полураспада. Для образования всякого рода злокачественных образований используется фтор-18 (фтордезоксиглюкоза), йод-124 используется для диагностирования рака щитовидной железы, галлий-68 — для обнаружения нейроэндокринных опухолей.
Функционал Fusion формирует новую серию, в которой изображения обоих модальностей (и PET и CT) объединены. В реализации изображения обоих модальностей перемешиваются, а затем сортируются по оси Z (считаем, что X и Y – оси изображения). Фактически получается, что изображения в серии чередуются (PET, CT, PET, CT …). Эта серия в дальнейшем используется для отрисовки 2D fusion и 3D fusion. В случае 2D fusion изображения отрисовываются попарно(PET-CT) в порядке возрастания Z:
В данном случае сначала был отрисовано изображение CT, затем PET.
3D fusion реализован для видеокарты на CUDA. На видеокарте отрисовываются одновременно обе 3D-модели — PET и CT и получается реальный мультимодальный fusion. На процессоре fusion тоже работает, но работает несколько иначе. Дело в том, что на процессоре обе модели представлены в памяти как отдельные окто-деревья. Следовательно, при отрисовке необходимо трассировать два дерева и синхронизировать пропуск прозрачных вокселей. А это бы значительно снизило скорость работы. Поэтому было решено просто накладывать результат рендера одной 3D-модели поверх другой.
4D CardiacCT
Технология Cardiac CT используется для диагностики различных нарушений работы сердца, включая коронарную болезнь сердца, тромбоэмболия легочной артерии и другие заболевания.
4D Cardiac CT представляет собой 3D во времени. Т.е. получается небольшое видео, которое будем называть кинопетлёй, в которой каждый кадр будет представлять собой 3D-объект. Исходные данные представляют собой набор dicom-изображений сразу для всех кадров кинопетли. Для того чтобы преобразовать набор изображений в кинопетлю, необходимо сначала сгруппировать исходные изображения по кадрам, а затем для каждого кадра создать 3D. Построение 3D-объекта на уровне кадра происходит так же как и для любой серии dicom-изображений. Мы используем эвристическую сортировку изображений для группировки по кадрам, используя положение изображения на оси Z (считая что X и Y это оси изображения). Полагаем, что после группировки по кадрам, в каждом кадре получается одинаковое количество изображений. Переключение кадра фактически сводится к переключение 3D-модели.
5D Fusion Pet – CardiacCT
5D Fusion Pet – CardiacCT — это 4D Cardiac CT с добавлением fusion с PET в качестве пятой размерности. В реализации сначала создаём две кинопетли: с CardiacCT и с PET. Затем делаем fuision соответствующих кадров кинопетель, что даёт нам отдельную серию. Затем строим 3D полученной серии. Выглядит это так:
Виртуальная эндоскопия
В качестве примера виртуальной эндоскопии будем рассматривать виртуальную колоноскопию, поскольку она является наиболее распространённым видом виртуальной эндоскопии. Виртуальная колоноскопия позволяет на основе данных КТ построить объёмную реконструкцию области брюшной полости и по этой трёхмерной реконструкции произвести диагностику. Во вьюере есть инструмент полёт камеры (fly-through) с навигацией по MPR:
который в том числе позволяет автоматически следовать анатомической структуре. В частности позволяет просматривать внутрикишечную область в автоматическом режиме. Вот как это выглядит:
Полёт камеры представляет серию последовательных перемещений по внутрикишечной области. Для каждого шага вычисляется вектор перемещения камеры в следующую часть анатомической структуры. Вычисление производится на основе прозрачных вокселей в следующей части анатомической структуры. Фактически вычисляется некий средний воксель среди прозрачных. Начальный вектор перемещения задаётся вектором камеры. В инструменте Полёт камеры используется исключительно перспективная проекция.
Также есть функционал для автоматической сегментации кишечника, т.е. функционал для отделения кишечной области от остальной анатомии:
Возможна также навигация по сегментированной 3D-модели (кнопка Show camera orientation), которая по клику мыши на 3D-моделе перемещает камеру на соответствующую позицию в исходной анатомии.
Сегментация реализуется с помощью волнового алгоритма. Полагается, что анатомия замкнутая в том смысле, что она не контактирует с другими органами и внешним пространством.
Система просмотра ЭКГ (Waveform)
Отдельным модулем во viewer’е реализовано чтение данных из Waveform и их отрисовка. DICOM ECG Waveform это специальный формат хранение данных отведений электрокардиограмм, определяемый стандартом DICOM. Данные электрокардиограммы представляют собой двенадцать отведений — 3 стандартных, 3 усиленных и 6 грудных. Данные каждого отведения представляют собой последовательность измерений электрического напряжения на поверхности тела. Для того чтобы отрисовать напряжения, нужно знать масштаб по вертикали в мм/мВ и масштаб по горизонтали в мм/сек:
В качестве вспомогательных атрибутов также отрисовывается сетка для простоты измерения расстояний и масштаб в левом верхнем углу. Варианты масштаба подобраны с учётом врачебной практики: по вертикали — 10 и 20 мм/мВ, по горизонтали — 25 и 50 мм/сек. Также реализованы инструменты для измерения расстояния по горизонтали и вертикали.
DICOM-Viewer как DICOM-клиент
DICOM-Viewer, помимо прочего, представляет собой полноценный DICOM-клиент. Есть возможность производить поиск на PACS-сервере, получать из него данные и др. Функции DICOM-клиента реализованы с помощью открытой библиотеки DCMTK. Рассмотрим типичный use-case работы DICOM-клиента на примере viewer’а. Производим поиск стадий на удалённом PACS-сервере:
При выборе стадии внизу отображаются серии для выбранной стадии и количество изображений в них. Сверху справа указывается PACS-сервер, на котором будет произведён поиск. Поиск можно параметризовать, уточняя критерии поиска: PID, дата исследования, имя пациента и др. Поиск на клиенте реализуется командой C-FIND SCU с помощью библиотеки DCMTK, которая работает на одном из уровней: STUDY, SERIES и IMAGE.
Далее изображения выбранной серии можно загрузить, используя команды С-GET-SCU и C-MOVE-SCU. Протокол DICOM обязывает стороны соединения, т.е. клиента и сервера, заранее договориться, какие типы данных они собираются передавать через это соединение. Под типом данных понимается комбинация значений параметров SOPClassUID и TransferSyntax. SOPClassUID определяет тип операции, которую планируется выполнять через данное соединение. Наиболее часто используемые SOPClassUID’ы: Verification SOP Class (пинг сервера), Storage Service Class (сохранение изображений), Printer Sop Class (выполнение печати на DICOM-принтере), CT Image Storage (сохранение изображений КТ), MR Image Storage (сохранение изображение МРТ) и другие. TransferSyntax определяет формат бинарного файла. Популярные TransferSyntax’ы: Little Endian Explicit, Big Endian Implicit, JPEG Lossless Nonhierarchical (Processes 14). То есть, чтобы передать МРТ изображения в формате Little Endian Implicit, то в соединение необходимо добавить пару MR Image Storage — Little Endian Explicit.
Загруженные изображения сохраняются в локальное хранилище и, при повторном просмотре, загружаются из него, что позволяет увеличить производительность viewer’а. Сохранённые серии помечаются жёлтым значком в верхнем левом углу первого изображения серии.
Также DicomViewer как DICOM-клиент умеет записывать диски с исследованиями в формате DICOMDIR. Формат DICOMDIR реализуется в виде бинарного файла, который содержит относительные пути ко всем DICOM-файлам, которые записываются на диск. Реализуется с помощью библиотеки DCMTK. При чтении диска считываются пути ко всем файлам из DICOMDIR и после этого загружаются. Для добавления в DICOMDIR стадий и серий был разработан такой интерфейс:
Вот и всё, что я хотел рассказать про функционал DicomViewer’а. Как всегда очень приветствуется обратная связь от квалифицированных специалистов.
Примеры данных:
MANIX — для общих примеров (MPR, 2D, 3D и т.д.)
COLONIX — для виртуальной колоноскопии
FIVIX — 4D CARDIAC-CT
CEREBRIX — Fusion PET-CT
Формат дайком что такое
Универсальные компьютерные сетевые технологии не обладают возможностями подключения различного медицинского оборудования. Поэтому его производители были вынуждены разрабатывать собственные коммуникационные интерфейсы. Однако, в связи с широким спектром используемого медицинского оборудования различных производителей, возникла необходимость в коммуникационных стандартах.
В настоящее время в мире используются различные медицинские коммуникационные стандарты: HL7, IEEE/Medix, X12, ASTM, NCPDP и другие [1]. Они охватывают широких круг задач, от интерфейса с лабораторным оборудованием до обмена информацией между отдельными клиниками. Для обеспечения взаимной совместимости этих стандартов при комитете HISPP (Health Informatics Standards Planning Panel) ANSI был создан подкомитет MSDS (Message Standards Developers Subcommittee). Область медицинской коммуникации была разделена на функциональные задачи, каждой из которых стала заниматься своя рабочая группа, представляющая комитеты по соответствующим стандартам: модель данных – IEEE/Medix, межорганизационный обмен – X12N, внутриорганизационная администрация и заключения – HL7, клинические результаты – ASTM, фармакология – NCPDP, изображения – ACR/NEMA (American College of Radiology / National Electrical Manufactures Association). Для минимального изменения существующих стандартов предполагается на основе общей модели данных специфицировать области, в которых предпочтительно использовать тот или иной стандарт. Так стандарт HL7 предполагается использовать для обеспечения интерактивного обмена данными в госпитальной инфраструктуре, X12 – для работы с медицинской информацией по коммутируемым линиям. В настоящее время ASTM и HL7 уже имеют общий формат для клинических данных, а X12N разрабатывает формат включения сообщений HL7 для внедрения детальных клинических данных в формат X12.
Для передачи изображений наиболее широко используется стандарт DICOM (Digital Imaging and Communications in Medicine), разработанный Американской коллегией радиологии и Национальной ассоциацией производителей электроники (ACR/NEMA). Кроме того, другие коммуникационные стандарты (HL7, X12) используют формат стандарта DICOM для передачи изображений.
1. Возможности стандарта DICOM
На основе стандарта DICOM и типовых сетевых решений, как один из вариантов, рекомендуется 3–х уровневое интеграционное решение, изображенное на рис 1.
Первый уровень охватывает инфраструктуру отдельного отделения, например радиологического. Он связывает различное медицинское оборудование в единую систему. DICOM обеспечивает интеграцию как совместимого с ним оборудования, так и ранних моделей оборудования без коммуникационных возможностей с использованием DICOM–конверторов. Конвертор обеспечивает перевод команд и данных оборудования в формат стандарта, и наоборот. Он может реализовываться на базе универсального компьютера или специализированного микроконтроллера. Оборудование, совместимое со стандартом DICOM, просто подключается к сети. На этом уровне также располагаются различные станции диагностики и анализа. Целесообразно применения отдельного DICOM–сервера для принтера и дигитайзера (сканера).
Второй уровень управляет изображениями, охватывая несколько отделений. Администратор изображений выполняет работу по управлению подчиненными архивами. На данном уровне могут также подключаться различное оборудование и серверы.
Третий уровень служит для управления всей информацией, распределения времени использования оборудования, и т.д. Он обеспечивает выход в радиологическую информационную систему, а через нее и в госпитальную информационную систему.
Остановимся на следующих моментах интеграции – ввод, передача, визуализация и архивация.
1.1. Ввод
1.2. Передача
Для организации передачи данных во внутренней инфраструктуре отделения на основе локальной сети (LAN) предпочтительно использование Ehternet, или более высокоскоростные технологии (Fast Ehternet, ATM, FDDI). Применение в стандарте модели ISO/OSI и протокола TCP/IP обеспечивает подключение практически любых типов платформ: DOS/Windows, Unix, Mac, и т.д.
При соединении удаленных клиник и исследовательских центров через глобальные сети (WAN) ключевыми моментами являются скорость и стоимость. Всеобщее распространение Internet позволяет организовать передачу данных практически в любую точку планеты и добиться требуемого соотношения цена/скорость посредством выбора способа доступа (модем, коммутируемые линии, прямое подключение).
1.3. Визуализация.
1.4. Архивация.
2. Стандарт DICOM версии 3.0
2.1 История создания.
В 1983 году ACR/NEMA сформировала объединенный комитет, поставив себе задачи обеспечения обмена цифровой информацией между медицинским оборудованием различных производителей, разработки принципов работы систем архивации изображений и взаимодействия с другими госпитальными системами.
Первая версия стандарта была опубликована в 1985 году [2]. Она определяла аппаратный интерфейс, минимальный набор команд, правила кодирования и передачи данных, и была применима только для среды с выделенным каналом – для операций в сетевом окружении требовался интерфейсный модуль. В 1988 году вышла версия 2.0 [3], которая уже включала командную поддержку дисплейных устройств, вводила новую иерархическую схему для идентификации изображений и дополняла элементы данных для более детального описания изображений.
2.2 Содержание стандарта.
DICOM v3.0 имеет технологию для уникальной идентификации любой информации при сетевом взаимодействии, а также применяет сжатие изображений по стандарту JPEG [8]. Далее в статье описана третья версия стандарта.
2.2.1 Информационные объекты.
2.2.2 Сервисные классы.
В стандарте SOP–классы подразделяются на нормализованные и смешанные. Нормализованные классы предназначены для выполнения операций над конкретным IOD, в то время как смешанные – над логически связанным набором разнотипных IODs.
2.2.3 Структура сообщений, форматы команд и данных, сервис передачи сообщений DIMSE (DICOM Message Service Element).
Команды служат для спецификации выполняемых операций и установления соединения. Последовательность команд строится из командных элементов, определяемых протоколом элемента DIMSE, аналогично последовательности данных. Командные элементы не имеют поля типа (VR) и передаются в порядке увеличения номера тега, сначала идут младшие байты.
В стандарте зарегистрированы все элементы DICOM–сообщений и уникальные идентификаторы для синтаксиса передачи и SOP–классов. Для элементов определены теги, типы данных и список предопределенных значений (если необходим).
2.2.4 Взаимодействие с моделью OSI и используемые протоколы.
2.2.5. Интерфейс с медицинским оборудованием.
В стандарте определен коммуникационный протокол с выделенным соединением на основе семиуровневой модели ISO/OSI. Он выделяет 3 уровня, перекрывающие модель OSI: физический, канальный и сессии/транспорта/сети (STN) уровни. На физическом уровне данный протокол использует свой собственный 50–ти жильный кабель. Для него определены управляющие сигналы, прерывания, диаграммы состояния, временные параметры и нумерация контактов. На канальном уровне поддерживаются потоки данных, он также следит за статусом интерфейса и ошибками. На уровне STN поддерживаются виртуальные каналы и конвейеризация сообщений по интерфейсу. C введением в DICOM v3.0 поддержки модели OSI и протокола TCP/IP данный интерфейс утратил свою актуальность и используется для подключения DICOM–оборудования 1 и 2 версий стандарта.
2.3 Дополнения к стандарту.
DICOM поддерживает различные форматы физических носителей: дискеты 1.44М, магнитооптические диски емкостью 128М, 650М и 1.2G, а также 120мм записываемые оптические диски (CD–R). В качестве файловой системы используется FAT, совместимая с DOS версии 4.0 и выше.
3. Результаты
Разработана технология поддержки стандарта DICOM в программном обеспечении (ПО). Спецификация стандарта DICOM объединяет информацию и функциональность логическими блоками, поэтому был выбран объектно–ориентированный поход при разработке ПО поддержки DICOM. Основные свойства ООП – инкапсуляция, наследование и полиморфизм, обеспечивают большую структурированность и абстрактность, чем традиционное программирование, и хорошо вписываются в стандарт DICOM. Вся входящая и выходящая информация представляется в виде потоков, что обеспечивает должный уровень абстрагирования от способа получения информации (из сети, с локального диска или оборудования). Минимальной единицей информации в стандарте являются элементы данных, которые реализуют различные типы данных DICOM – текстовые, строковые, двоичные и др. Они реализованы полиморфно и происходят от одного предка, который “умеет” только читать и записывать данные в поток, а также проверять правильность своих данных. Из этих минимальных объектов строятся более крупные – IODs. Они также реализованы полиморфно, т.е. являются наследниками от абстрактного IOD, который уже “умеет” высокоуровнево читать и записывать данные в поток, отображать и вводить данные, и т.д. Наследование позволяет легко расширять функциональность стандартных объектов DICOM и вводить собственные специфичные классы объектов.
В данной реализации содержимое DICOM–файлов и сетевых сообщений представляется классом потока. Методы SOP–классов и соответствующая рабочая информация инкапсулированы в специальные классы, что обеспечивает простоту создания приложений различного назначения. Все объекты являются динамическими, т.е. создаются и уничтожаются на этапе выполнения программ, что позволяет минимизировать затраты памяти и работать с любым количеством экземпляров объекта.
На основе принципов ООП выполнен “словарь” данных (специфицированный в части 6 – Data Dictionry стандарта), являющийся неотъемлемой частью любого ПО для работы с DICOM и позволяющий обеспечить кодирование / декодирование содержимого файлов или сообщений в формате стандарта. Словарь имеет следующие методы – поиск по заданному тегу названия, типа данных, числа возможных значений, предопределенных значений для DICOM–элемента, он также поддерживает добавление новых элементов.
В соответствии с требованиями стандарта реализован DICOM–сервис верхнего уровня для протокола TCP/IP на основе стека РС/ТСР 3.0 для DOS фирмы FTP Software. Ведется перенос данного сервиса на базе спецификации WinSocket в среду Windows.
Создано ПО (для среды DOS) редактирования и просмотра файлов в формате DICOM c простым графическим интерфейсом, работающее как в реальном, так и в защищенном (DPMI) режиме. Частично данное ПО реализовано и для Windows.
Для обеспечения независимости от конкретной платформы ведется работа по переносу технологии работы с DICOM–информацией на язык Java.
4. Выводы.
Совершенно очевидно, что на сегодняшний день DICOM является хорошо проработанным стандартом, на который имеет смысл ориентироваться российским разработчикам. Начиная с создания простейших DICOM–конверторов, а также серверов архивации и печати, постепенно переходя к полноценным DICOM–решениям. Работы в этом направлении ведутся в Московском Государственном Институте Электронной Техники.