Бозон что это такое
Что такое бозон Хиггса и почему ученые хотели его открыть
Многие что-то где-то слышали про бозон Хиггса, а некоторые даже пробовали разобраться в вопросе того, что это такое. В итоге, объяснение данного процесса такое сложное, что понять все это не так легко. Мы просто знаем, что это важно, и все. Хотя иногда даже складывается ощущение, что ученые от нас что-то скрывают, и на самом деле аппаратура на миллиарды долларов, включая Большой адронный коллайдер, просто не нужна. Конечно, это не так, и физики сделали большое открытие (и продолжают делать новые), вот только надо понимать, даст ли это что-то нам с вами. Я имею в виду простых людей, которым интересно прочитать и удивиться, сколько денег потратили на новую лабораторию, но куда интереснее получить от этого какие-то преимущества. Давайте попробуем понять, светит ли нам мир во всем мире и будет в наших домах теплей от обнаружения бозона Хиггса. Да и вообще, что это такое.
В основе основ всегда есть что-то. Вопрос в том, как это найти.
Что такое бозон Хиггса
Прежде, чем рассказывать, чем является одно из самых важных открытий современной физики, надо дать этому определение. Желательно сделать это простым языком, а не так, чтобы его поняли только дипломированные физики. Этим и займемся.
Сделать это совсем просто — не просто. Еще в начале девяностых годов прошлого века в разных научных сообществах даже учреждались премии, которые должны были стимулировать ученых придумывать простые объяснения главной частицы всех теорий. Получалось так себе, но версии были очень разные.
Например, одна из версий абстрактно сравнивала ситуацию с вечеринкой. Приводилась в пример группа людей, которая присутствует на каком-либо мероприятии, куда в какой-то момент заходит известный человек. Для наглядности можно даже сказать знаменитый. В итоге, некоторые люди в помещении начинают перемещаться в его сторону и идут за ним, так как хотят с ним пообщаться.
Во время такого следования толпа может разбиваться на небольшие группы, которые, допустим, будут обсуждать какие-то новости или сплетни. Постепенно они начнут передавать сплетню друг другу и начнут образовывать уплотнения.
В этом объяснении помещение является полем Хиггса, знаменитость является частицей, движущейся в поле, а группы людей будут представлять из себя возмущения этого поля. Ничего не понятно? Согласен! Но ведь это одно из самых простых объяснений. Если вы можете более просто объяснить, что такое бозон Хиггса, расскажите об этом в нашем Telegram-чате. Может у вас получится.
Где-то тут должна ходить знаменитость и тогда мы поймем, что такое бозон Хиггса. Или нет…
Существует ли бозон Хиггса
Бозон Хиггса является фундаментальной частицей Стандартной модели. До недавнего времени найти ее было невозможно. При этом существование такой частицы физики предсказывали еще в шестидесятые годы прошлого века. У них не было оборудования, которое позволяло бы доказать существование таких частиц, и им нужен был инструмент, который создали только существенно позже. Произошло это в 2008 году, когда в ЦЕРНе (Европейский совет ядерных исследований) появился Большой адронный коллайдер.
Стандартная модель является теоретической конструкцией, применяемой в физике элементарных частиц. Она описывает электромагнитное взаимодействие всех элементарных частиц (слабое и сильное). Стандартная модель не описывает некоторые стороны физики, например, темную материю. Именно поэтому ее нельзя называть теорией всего. Картинка стандартной модели ”полностью сложилась”, когда открыли бозон Хиггса.
Почему бозон Хиггса называют ”частицей Бога”
С 2008 год ученые подкованы поисках ”Частицы Бога” (одно из названий бозона Хиггса). Так ее называют по предложению Леона Ледермана, который был нобелевским лауреатом и выпустил книгу с заголовком, начинающимся с этих слов. Хотя самому ученому больше по душе было название ”Проклятая частица”, но оно как-то не прижилось.
Благодаря этому американскому ученому бозон Хиггса стали называть именно так.
Как говорится, ”хоть чертом лысым назови”, но частицу в итоге нашли и произошло это в 2012 году. Помог в обнаружении как раз тот самый Большой адронный коллайдер. При этом после обнаружения ученые сообщили об этом, но не торопились делать поспешных выводов и выступали очень осторожно. В первые дни после эксперимента ученые говорили, что они только нашли элементарную частицу, похожую на бозон Хиггса.
Что даст обнаружение частицы Бога
Немного абсурдный пример. Какое-нибудь насекомое живет под землей и никогда не вылезает на поверхность, но догадывается, что небо синее (вот такое умное насекомое). Потом оно видит синий цвет и понимает, какое на самом деле небо, и что оно было право. Вот только изменит ли это что-то с точки зрения самого неба? Конечно, нет. Оно как было синим, так и осталось, а насекомое, как жило под землей, так и продолжило там жить.
Почему наша Вселенная такая странная и существуют ли законы физики?
Примерно так же дела обстоят и с бозоном Хиггса. Он не позволит начать нам путешествовать во времени, не поспособствует созданию вечного двигателя и не станет основной лекарства от всех болезней. По сути его обнаружение просто подтвердило предполагаемые принципы взаимодействия частиц и свело воедино все утверждения Стандартной теории. Возможно, из-за его появления вопросов в других областях физики, наоборот, станет только больше.
Визуализаций поиска бозона Хиггса очень много.
Где можно применить бозон Хиггса
На практике применение бозона Хиггса пока невозможно, да и не понятно, где его применять. Зато он важен для фундаментальной физики. Ну, хотя бы он не привел к концу света, о котором говорили многие скептики. Были даже теории о том, что столкновение частиц в Большом адронном коллайдера может породить черную дыру, которая поглотит всю нашу Солнечную систему. А Дэн Браун в своей известной книге ”Ангелы и демоны” сделал основной сюжета охоту за антивеществом, которое злоумышленники похитили в ЦЕРН.
В итоге у нас (у человечества) есть бозон Хиггса и Большой адронный коллайдер в центре Европы, стоимость строительства которого превысила 10 миллиардов долларов. Практической пользы для простых людей чуть меньше, чем нет совсем, но звучит вся эта история интересно. Ну, хоть физики довольны — может найдут применение своей находке.
Просто о сложном: бозоны, фермионы, кварки и другие элементарные составляющие Вселенной
Теории и практики
Из-за обширной терминологии большинство популярных книг и статей по физике элементарных частиц не углубляются дальше самого факта существования кварков. Сложно что-либо обсуждать, если широкой аудитории не до конца понятны основные термины. Студент МФТИ и сотрудник лаборатории фундаментальных взаимодействий Владислав Лялин взял на себя функцию путеводителя в то, что называется Стандартной моделью, — главенствующую физическую теорию, объясняющую все известные науке частицы и их взаимодействие между собой, то есть устройство Вселенной на самом глубоком уровне.
Строение вещества
Владислав Лялин
Итак, все состоит из молекул, а молекулы состоят из атомов. Атом состоит из ядра и облаков электронов вокруг него, которые совершают куда более сложные движения, чем просто вращение. Ядро примерно в 10 тысяч раз меньше размера атома, хотя это и есть почти вся его масса, и состоит из протонов и нейтронов. Как правило, на этом большинство школьных курсов физики заканчиваются, но на этом не заканчивается физика. В 50-х годах прошлого века ученые знали о существовании пяти частиц, которые они называли элементарными. Это были протон, нейтрон, электрон, фотон и электронное нейтрино. Уже через несколько десятков лет (с появлением первых коллайдеров) частиц, которые стоило бы причислить к элементарным, стало несколько десятков, и это число только росло. Термин «элементарная частица» пришлось пересматривать — и заодно придумывать новую теорию, еще сильнее углубляться в строение вещества. Со временем была создана теория, названная Стандартной моделью, описывающая все известные взаимодействия (кроме гравитации).
Еще с древних времен материя и силы (взаимодействия) в физике были отделены. Эта идея присутствует и в Стандартной модели. Все элементарные частицы в ней делятся на «кирпичики материи» — фермионы и переносчики взаимодействия — бозоны. Эти классы частиц сильно отличаются друг от друга, одним из самых ярких отличий является отсутствие принципа запрета Паули у бозонов. Грубо говоря, в одной точке пространства может быть не более одного фермиона, но сколько угодно бозонов.
Бозоны
В Стандартной модели всего шесть элементарных бозонов. Фотон не обладает электрическим зарядом, он передает электромагнитное взаимодействие — то самое, которое связывает атомы в молекулы. Глюон передает сильное взаимодействие и обладает своим видом заряда (об этом еще будет сказано). Именно сильное взаимодействие отвечает за ядерные силы, скрепляющие протоны и нейтроны в ядрах. W+, W- и Z0 означает, что бозоны заряжены соответственно положительно, отрицательно и нейтрально (не заряжены). Они отвечают за так называемое слабое взаимодействие, которое умеет превращать одни частицы в другие. Самый простой пример слабого взаимодействия — распад нейтрона: один из кварков, составляющих нейтрон, излучает W-бозон и превращается в другой кварк, а распадается на электрон и нейтрино.
Остается последний бозон — бозон Хиггса. Теоретически он был предсказан еще в 60-х годах прошлого века, но экспериментально его существование было доказано только в 2013 году. Он отвечает за инертную массу элементарных частиц — именно массу, ответственную за эффекты инерции, а не притяжения. Квантовой теории, которая связала бы и инерцию, и гравитацию, пока что нет.
Фермионы
Элементарных фермионов гораздо больше, чем элементарных бозонов. Их делят на два класса: лептоны и кварки. Они отличаются тем, что кварки участвуют в сильном взаимодействии, а лептоны — нет.
Лептоны
Кварки
В английском слово funny может иметь значения «забавный» и «странный». Вот кварки как раз и есть funny. Они забавно называются: верхний, нижний, странный, очарованный, прелестный и истинный. И они очень странно себя ведут. Существует три поколения кварков, по два кварка в каждом, и точно так же у них у всех существуют античастицы. Кварки участвуют как в электромагнитном и слабом взаимодействиях, так и в сильном. Для заметки: фермионы, участвующие в сильном взаимодействии, называются адронами; таким образом, адроны — это частицы, состоящие из кварков. Поэтому Большой адронный коллайдер, собственно, называется адронным: там сталкивают протоны или ядра атомов (адроны), но не электроны. Кварки любят образовываться в частицы из трех и двух кварков, но никогда не появляются по одному. В этом и заключается их странность. Частицы из трех кварков называют барионами, а из двух — мезонами.
Почему они так делают? Это происходит из-за особенностей сильного взаимодействия, которое удерживает кварки в адронах. Сильное взаимодействие очень интересно: вместо одного заряда, как в электромагнитном, у сильного их бывает три. И оказывается, что существуют только нейтральные частицы, а нейтральной частица может быть, только если в ней есть либо три разных заряда одного знака, либо два одинаковых заряда разного знака. Из-за этой особенности (и для удобства) заряды начали называть красным, зеленым и синим, а соответствующие отрицательные заряды — антикрасным, антизеленым и антисиним. Получается, что если взять красный, зеленый и синий, мы получим белый, то есть нейтральный; если взять красный и антикрасный, мы тоже получим белый. Это легко запоминается, но стоит подчеркнуть, что это не имеет никакого отношения к цветам, к которым мы привыкли в жизни. Это просто красивая и удобная аналогия со смешиванием. В Стандартной модели каждый кварк может быть любого из трех цветов, а антикварк — любого из трех «антицветов». Получается, что ни один из кварков не может быть непосредственно зарегистрирован, ведь свободно существовать могут только бесцветные частицы, а кварки «раскрашены». Эта особенность их поведения называется конфайнментом, что с английского дословно переводится как «заточение».
Конфайнмент
Хорошо — допустим, что кварки не могут существовать свободно. Но что если просто взять мезон, состоящий из двух кварков, и разорвать его на две части? Не получим ли мы два кварка? (На самом деле нет.) Представьте, что мезон очень сильно растягивают. В отличие от электромагнитного, сильное взаимодействие тем сильнее до определенного предела, чем взаимодействующие частицы дальше друг от друга. Это похоже на пружину: чем сильнее ее растягивать, тем сильнее она будет сжиматься и тем больше у нее будет энергии. Чтобы сильнее стягивать кварки, сильное взаимодействие создает новые глюоны. И чем дальше мы их растягиваем, тем больше глюонов создается. Но в момент энергия этих созданных глюонов становится настолько большой, что выгоднее становится создать новую пару кварк-антикварк, чем продолжать плодить глюоны. Много глюонов исчезает, вместо них появляются кварк и антикварк. В момент появления кварк-антикварковой пары из четырех кварков создаются два мезона, каждый из которых бесцветен.
Может показаться, что теория замкнута сама на себе и что кварков на самом деле не существует, а конфайнмент, по сути, костыль, который придумали только для того, чтобы прекратить поиски кварков; что это просто удобная модель, которая не имеет под собой физического обоснования. Долгое время в научных кругах ходила такая мысль. Однако поздние теоретические исследования и недавние экспериментальные показывают, что при определенных условиях кварки могут покидать адроны. Более того, это состояние материи существовало практически сразу после большого взрыва, и только после сильного охлаждения кварки связались в адроны. Такое состояние материи сейчас исследуют на Большом адронном коллайдере в эксперименте ALICE. Для его получения нужна температура в два триллиона градусов. Это состояние материи называется кварк-глюонной плазмой.
Для понимания, что есть кварк-глюонная плазма, стоит провести аналогию. Представьте себе воду в невесомости. Она находится в жидком агрегатном состоянии, и сил поверхностного натяжения она имеет вид шара — можно сказать, что она заточена в этот шар. Начнем повышать температуру. Когда она достигнет 100 градусов, вода начнет кипеть, активно испаряться и со временем полностью станет паром, у которого уже не будет силы поверхностного натяжения. Явление превращения воды в пар называется фазовым переходом. Если продолжить нагревать пар, то примерно при 1 400 градусах молекулы воды разделятся на водород и кислород — сдиссоциируют, — и вода станет смесью кислородной и водородной плазм. Это еще один фазовый переход. Теперь возьмем газ — но не из молекул воды, а из адронов — и начнем его нагревать. Придется нагревать весьма сильно, потому что для фазового перехода нужна температура примерно в два триллиона градусов. При такой температуре адроны как бы «диссоциируют» в свободные кварки и глюоны. Таким образом, адрон совершит фазовый переход в состояние кварк-глюонной плазмы. Это явление называется деконфайнментом, то есть процессом освобождения кварков из адронов.
В поисках теории всего
Последнего экспериментального подтверждения Стандартная модель ждала около 50 лет, но теперь бозон Хиггса найден — что дальше? Можно ли думать, что великие открытия закончились? Конечно, нет. Стандартная модель изначально не претендовала на звание теории всего (ведь она не включает в себя описание гравитации). Более того, в декабре прошлого года ATLAS и CMS в коллаборации опубликовали статьи о возможном обнаружении новой тяжелой частицы, не вписывающейся в Стандартную модель. И физики не грустят, а, наоборот, рады, ведь сам Большой адронный коллайдер строили не для того, чтобы подтверждать уже известное, а чтобы открывать новое. И так же «новая физика» не говорит о том, что Стандартная модель будет вычеркнута и предана анафеме. Мы ученые, и если что-то точно работает (а Стандартная модель это доказала), то оно должно быть частным случаем любой новой теории, иначе новая теория будет противоречить старым экспериментам. Для примера: механика Ньютона является прекрасной моделью для описания движения с низкими (значительно меньше скорости света) скоростями — несмотря на то, что сейчас мы знаем специальную теорию относительности. Точно так же, когда появятся новые модели (или модификации Стандартной), будут существовать условия, при которых будет верно то, что мы знаем сейчас.
Что такое Бозон Хиггса простыми словами
Представить частицы, их форму и другие свойства корректно нельзя. Ситуация сложнее, чем с электронами, которые со школьных времен для людей выглядят как шарики. Но стоит попробовать понять, что такое Бозон Хиггса, и почему он стал предметом громких дискуссий.
Как произошло открытие Бозона Хиггса
Бозон Хиггса простым языком – самая дорогая частица. Чтобы появилось простейшее представление, стоит разобрать понятие по словам.
Бозон – частицы, переносящие взаимодействие других частиц. Притяжение или отталкивание – результат обмена бозонами. Есть элементы слабого, сильного и электромагнитного взаимодействия. Все частицы, кроме W и Z бозонов не имеют инертной массы. Питер Хиггс открыл существование поля, благодаря которому они обретают это свойство.
Как представить бозон Хиггса
Ученый, который совершил открытие нового бозона Хиггса, сделал наглядное сравнение. Если шарики пенопласта оставить на столе, то самый легкий ветер их снесет или изменит положение. На воде сдуть шарики сложнее. Именно воду, которая сдерживает движение, сравнивают с полем Хиггса.
Поиски частицы
Во время поисков бозона физики предлагали разные варианты. Было два подхода в развитии модели. 2012 год ознаменовался обнаружением первого возможного бозона. Его энергия равнялась 126 ГэВ. Годом позже удалось подтвердить, что частица была действительно найдена на Большом адронном коллайдере. Еще через несколько лет поиски дали результат, были обнаружены бозоны 700 и 250–450 ГэВ.
Частица Бога
Из-за жарких споров о бозонах в упоминаниях появилось название «проклятая/чертова частица». Но в литературе такое сочетание было неуместным, окончательный вариант простонародного названия – «Частица Бога». Ученые дали еще одно шуточное определение – «бозон бутылки шампанского». Это произошло из-за того, что в потенциале комплексного поля Хиггса есть образ донышка бутылки шампанского.
Что будет дальше
Частица Бозон Хиггса – ключевое понятие для понимания взаимодействия темной матери с обычной при помощи гравитации и создания массы. Исследователи полагают, что поле Хиггса – ключ ко многим открытиям. Хотя до его разгадки далеко.
Бозон Хиггса простыми доступными словами – частица, которая переносит взаимодействие между другими частицами и имеет инертную массу. Ее поиски стали ключом к разгадке взаимодействия темной материи. Впервые об открытии упомянули в 2012 году.
Моделирование, показывающее появление бозона Хиггса при столкновении двух протонов
Изображение с сайта ru.wikipedia.org
4glaza.ru
Октябрь 2020
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Другие обзоры и статьи о телескопах и астрономии:
Обзоры оптической техники и аксессуаров:
Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:
Все об основах астрономии и «космических» объектах:
Что такое бозон Хиггса?
Физика элементарных частиц — не такая популярная, как политика или сплетни о знаменитостях, но одному из ее представителей все же удалось собрать лавры. Речь идет, конечно, о бозоне Хиггса. 4 июля 2012 года команда CERN объявила, что нашла частицу, ради которой был построен Большой адронный коллайдер. Частица, дескать, точно соответствует ожиданиям физиков относительно хиггсовского бозона, или как его безграмотно окрестила пресса — «частицы бога». Бозон Хиггса отвечает за массу и будоражит умы. Что же это такое?
Конечно же, секрет шумихи в том, что мы еще немного приблизились к разгадке тайны Вселенной. Ну или хотим так полагать. Недавно мы писали о том, что физики CERN действительно нашли бозон Хиггса, поэтому никаких сомнений в том, что это именно тот бозон, не остается. Другой вопрос, что для его детального изучения придется построить еще несколько дорогостоящих коллайдеров.
Для того, чтобы понять, что такое бозон Хиггса, нам придется обратиться к одной из самых известных теорий, описывающих то, как работает космос: Стандартной модели. Эта модель пришла к нам в виде физических частиц, полей, которое физики постепенно заполняли строительными блоками по мере исследования Вселенной. Это происходило на протяжении веков и люди достигли существенного прогресса. Сначала мы обнаружили атомы, потом протоны, нейтроны и электроны, и наконец — кварки и лептоны (о них подробнее позже). Да, можно смести все эти фигуры с доски и сдаться квантовой механике, но физики упорно держатся за Стандартную модель, многие из них ее уже ненавидят и хотят опровержения, которое позволит найти более удобную и красивую теорию о том, как построен мир элементарных частиц. Но пока безуспешно, и открытие бозона Хиггса еще более оттянуло тщательный пересмотр СМ.
Как говорится, ежики плакали и кололись, но продолжали есть кактус. В конце концов, Стандартная модель дает нам глубокое представление о типах материи и сил, более глубокое, чем любая другая физическая теория.
Стандартная модель была разработана в 1970-х годах. Вот вся суть СМ в нескольких предложениях: наша вселенная состоит из 12 различных частиц материи и четырех сил. Среди этих 12 частиц есть шесть кварков и шесть лептонов. Кварки образуют протоны и нейтроны, а члены семьи лептонов включают электрон и электронное нейтрино — его нейтрально заряженный антагонист. Ученые полагают, что лептоны и кварки являются неделимыми: их нельзя разбить на более мелкие частицы. Наряду с этими частицами, Стандартная модель описывает четыре фундаментальных силы: гравитацию, электромагнитое, сильное и слабое взаимодействие.
Как теория, Стандартная модель работает хорошо, несмотря на ее неспособность вписаться в гравитацию. Благодаря этому, физики предсказали существование определенных частиц до того, как те были обнаружены экспериментально. И вот, на горизонте появился бозон Хиггса. Давайте выясним, как эта частица вписывается в Стандартную модель и Вселенную в целом.
Бозон Хиггса: последний элемент головоломки
Некоторые физики описывают бозоны как весы, связанные резинками с частицами материи, которая их порождает. Используя эту аналогию, мы можем представить бозоны, постоянно выстреливающие с помощью резинок и при этом спутывающиеся с другими бозонами в процессе рождения силы.
Ученые считают, что у каждой из четырех фундаментальных сил есть свои специфические бозоны. Электромагнитные поля, например, передают электромагнитную силу материи посредством фотона. Физики думают, что у бозона Хиггса такая же функция, но он будет передавать массу.
Но может ли у материи быть масса без бозона Хиггса? По Стандартной модели — нет. Но физики нашли решение. Что если у всех частиц нет собственной массы, но они получают ее, проходя через определенное поле? Это поле, известное как поле Хиггса, по-разному влияет на разные частицы. Фотоны могут проскользнуть незамеченными, а вот W- и Z-бозоны увязнут в массе. По факту, допущение существования бозона Хиггса говорит о том, что все, что обладает массой, взаимодействует с вездесущим полем Хиггса, которое занимает всю Вселенную. И как в других полях, описываемых Стандартной моделью, хиггсовскому нужна своя частица-переносчик, чтобы влиять на другие частицы. Она получила название бозона Хиггса.
4 июля 2012 года ученые, работающие на Большом адронном коллайдере, объявили, что открыли частицу, которая ведет себя как бозон Хиггса. Можно выдыхать — подумали физики, но выяснилось, что бозонов, подобных хиггсовскому, может быть несколько, а значит исследования на более высоких уровнях энергии будут продолжаться и продолжаться.
Что примечательно, бозон Хиггса неожиданно оказался прямо-таки провозвестником гибели Вселенной. Сценарий можно найти здесь.