Биоимпедансное исследование что это
Зачем делать биоимпедансный анализ состава тела?
Биоимпеданс – анализатор состава тела, показывает соотношение жировой, костной, мышечной ткани и количество воды в организме.
Кому и зачем его нужно проходить, мы спросили врача-терапевта, диетолога КДЦ ФГБУ «НМИЦ ТПМ» Минздрава России Елену Николаевну Игнатикову:
«Во-первых, это нужно людям, которые начинают соблюдать диету с целью снижения массы тела. Ведь важно контролировать не только сам вес, но и снижать его правильно. Потому что при неграмотно скомбинированной диете есть риск потерять не только жир, но и нужную человеку мышечную массу.
Во-вторых, спортсменам, которые хотят нарастить мышцы.
В-третьих, женщинам с наступлением климакса. С возрастом повышается риск остеопороза. Биоимпеданс – хороший вспомогательный инструмент для выявления риска развития остеопороза.
Но я бы порекомендовала делать это исследование всем, кто в принципе следит за своим здоровьем, с целью профилактики факторов риска.
Например, сейчас популярен термин «скинни фэт» (skinny fat), в переводе «тощий жир». Внешне такие люди выглядят худыми, но во внутренних органах происходит накопление жира.
Происходить это может по разным причинам, например, такой тип сложения у человека. Но также это может быть вызвано и нарушениями питания, когда в рационе дефицит белка и избыточное количество сладких рафинированных продуктов и вредных жиров.
Таким пациентам биоимпеданс скорее всего покажет повышенный процент жира в организме».
Пройти биоимпедансный анализ состава тела и получить консультацию диетолога можно в нашем центре.
Запись по телефонам +7 (495) 790-71-72, +7 (495) 510-49-10
Биоимпедансное исследование что это
Электроимпедансометрия (или биоимпедансный анализ) широко вошла в биологический эксперимент и медицинскую практику как неинвазивная методика, позволяющая получать информацию, не внося в организм изменений или риска развития осложнений. Метод сравнительно прост в исполнении, недорог и имеет преимущества перед традиционными методами неинвазивного контроля состояния организма. Он дает возможность оценки широкого спектра морфологических и физиологических показателей и основан на закономерностях, связывающих уровень электрического импеданса с параметрами компонентного состава тела, и заключается, в первую очередь, в оценке количества жидкости, так как именно она определяет активную составляющую импеданса. Кроме того, на основе данных биоимпедансометрии можно рассчитать такие характеристики, как жировая, тощая, клеточная и скелетно-мышечная масса тела [9, 26, 28]. Перечисленные возможности биоимпедансного анализа частично апробированы в клинических условиях для оценки гидратации головного мозга при угрозе отека, травмированных конечностей, грудных желез, десен, мочеточника и мочеиспускательного канала и др. [10, 27, 29, 30]. Конечно, решение этих задач подразумевает знание и учет взаимосвязей между составом тела и электрофизическими свойствами каждого сегмента как в норме, так и в патологии.
Значения электрического импеданса различных участков тела, как правило, различаются по величине. Поэтому на практике анализируют относительные показатели, например разницу импеданса неповрежденного и поврежденного участка кожи, симметричных участков тела и др.
Диагностическая значимость анализа биоимпеданса тканей связана еще и с информативностью его частотных зависимостей, поэтому иногда оценивают и коэффициент поляризации (Кп), равный отношению импедансов на двух фиксированных частотах, низкой и высокой, например 10 кГц и 1 мГц (диапазон β-дисперсии) [13, 22]. Диапазон β-дисперсии характеризуется резким частотным градиентом, свойственным исключительно живым тканям. По мере снижения активности обменных процессов и развития процессов деструкции крутизна дисперсии и соответственно Кп уменьшается. В ряде случаев используют трехчастотную методику в том же диапазоне [24].
Согласно данным специальной литературы [10, 22, 25], электрический импеданс тканей на сравнительно низких частотах определяется особенностями их структуры, уровнем кровоснабжения и содержанием проводящей жидкости в межклеточных пространствах, «плотностью упаковки» структурных элементов в единице объема. Величина электропроводности на высокой частоте и, соответственно, ее дисперсия в диапазоне частот 10 кГц – 1 мГц – поляризацией фосфолипидов мембран клеток (как правило, диаметром порядка 30 нм) в поле внешнего электрического тока и дипольной поляризацией структурных образований в цитоплазме.
Анализ состава тела по показателям импеданса помогает контролировать состояние липидного, белкового и водного обмена организма. В этой связи он представляет интерес для практической медицины и служит одним из инструментов оценки эффективности лечения больных ожирением [10]. У больных сердечно-cосудистыми заболеваниями биоимпедансометрия позволяет оценить нарушения водного баланса, перераспределения жидкости в водных секторах организма и обеспечить правильный подбор лекарственных препаратов. У реанимационных больных метод апробирован для мониторинга и планирования инфузионной терапии, а при циррозе печени для прогнозирования риска клинических осложнений.
Методы биоимпедансометрии используются на практике для определения границ термических поражений мягких тканей, которые являются одними из наиболее распространенных форм производственных травм.
Так, например, хорошо известно, что закономерности тканевой реорганизации миокарда, печени и некоторых других внутренних органов при контрастных температурных воздействиях и в некоторых других ситуациях, например при некробиозе части кардиомиоцитов и гепатоцитов, развивающиеся на фоне нарушений кровообращения и лимфотока, носят фазный характер. Исследования поляризационных и электропроводящих свойств мышечной ткани, печени и почек при термических воздействиях также выявили фазность их изменения, что позволило предположить наличие связи между электрофизическими параметрами тканей и морфофункциональными изменениями в них, в частности с тканевым кровообращением, гидратацией тканей и процессами некробиоза. Известно, что электропроводящие и поляризационные свойства тканей претерпевают изменения при гипоксических воздействиях различного генеза. Например, отмечена пропорциональная зависимость между нарастанием кислородного долга и изменениями высоко- и низкочастотного импеданса тканей [22].
Если динамика электрического импеданса тканей на низких частотах во многом определяется изменениями кровотока и лимфотока, то высокочастотная составляющая непосредственно связана с внутриклеточными процессами и активацией метаболизма. В этом плане представляет интерес сопоставление известных данных импедансометрии с результатами исследования структурных изменений при гипоксии и термических воздействиях, предполагая, что результат большинства стрессирующих воздействий на организм будет отражаться в соответствующей динамике электрофизических показателей [7, 8].
В случае воздействия неблагоприятных факторов нарушаются многие корреляционные связи в организме, что может привести к дезадаптации и гибели индивида. Какова цена перестроек, позволяющих сохранить жизнь, каковы механизмы интегрального взаимодействия функциональных систем – все это является весьма актуальной проблемой. Помочь в ее разрешении, по нашему мнению, может комплексное морфофункциональное и электрофизиологическое исследование.
В литературе содержится недостаточно сведений о динамике электропроводящих свойств тканей внутренних органов, исследованных после экстремальных воздействий на целостный организм, например при гипо- или гипертермии, гипоксии, гипокинезии. Однако в клинической практике в последние годы достаточно широко применяется термотерапия и гипертермия целостного организма для лечения онкологических заболеваний. Как подобное экстремальное воздействие на организм отразится на состоянии тканей других органов, во многом остается неясным.
Своевременное определение границ некротических повреждений и осуществление некроэктомии во многом определяет эффективность лечения и предупреждает развитие осложнений. В работе [15] показано, что временная динамика уровня импеданса сопредельных интактных и симметричных точек у травмированных пациентов была одинаковой, и соотношение их импедансов (Кж) было сравнительно стабильным и находилось в пределах 1 ± 0,095 (р