Беговая дорожка протектора шины что это
Криминалистическое исследование следов транспортных средств
Материал из CrimLib.info
Классификация транспортных средств
Все транспортные средства можно разделить на несколько больших групп:
1) наземный транспорт;
2) подземный транспорт;
3) водный транспорт;
4) воздушный транспорт.
Преимущественно в криминалистике изучаются следы только наземного безрельсового транспорта.
Наземный безрельсовый транспорт классифицируется:
по способу передвижения
Это легковые и грузовые автомобили, автобусы, троллейбусы, мотоциклы, мопеды, тракторы, экскаваторы, средства специального назначения.
Это тачки, тележки, велосипеды.
по устройству ходовой части
Классификация следов транспортных средств
Значение следов транспортных средств
Следы транспортных средств дают возможность:
1) определить групповую принадлежность транспортного средства, т.е. его тип и вид (например, следы оставлены грузовым или легковым автомобилем), а в ряде случаев и модель (например, легковой автомобиль ВАЗ-2109 «Жигули», грузовой автомобиль ЗИЛ-130);
2) идентифицировать по оставленным следам конкретное транспортное средство или его отдельную часть;
3) установить механизм произошедшего события (определить направление и режим движения, место, угол и линию столкновения (наезда), скорость перед торможением, другие важные обстоятельства ДТП).
Групповая идентификация является предварительным этапом индивидуальной идентификации транспортного средства по следам, а после тщательного изучения особенностей следов экспертом осуществляется индивидуальная идентификация. Групповую принадлежность автотранспортного средства можно установить путем изучения следов пневматических шин по признакам, отображенным в следах. Основой такой идентификации является изучение беговой дорожки, колеи, базы, отпечатков рисунка протектора шины.
Признаки следов транспортного средства
Групповую принадлежность автотранспортного средства можно установить путем изучения следов пневматических шин по признакам, отображенным в следах. Основой такой идентификации является изучение беговой дорожки, колеи, базы, отпечатков рисунка протектора шины.
По состоянию колес в момент следообразования различают следы качения (образуются в результате поступательно-вращательного движения колес) и скольжения (появляются при полной блокировке колеса в процессе торможения или пробуксовке).
Беговая дорожка
Следы качения шины одного колеса (обычно заднего) в криминалистике называют беговой дорожкой. Механизм образования следов беговых дорожек сходен по механизму образования со статическими следами: каждая точка шины оставляет свой отпечаток. Однако вследствие поступательного движения происходит некоторая их деформация, при которой выступающие элементы при выходе из следа сглаживают его края, что увеличивает его размеры и уменьшает следы промежутков между выступающими элементами (грунтозацепами).
Отдельно измеряется ширина беговой дорожки левых колёс и ширина беговой дорожки правых колёс.
В беговой дорожке отображаются следы протектора. Это та часть шины, где находится рисунок, который при вращении колес соприкасается с дорогой. По характеру отобразившегося в следе рисунка протектора и ширине беговой дорожки, руководствуясь специальными таблицами, можно определить модели шин, а также модели автомашин, мотоциклов, на которых такие шины устанавливаются.
Кроме того, установить марку автомашины возможно, если известен наружный диаметр колеса. Сделать это можно только при условии, если какая-либо особенность протектора (след вулканизации, повреждение протектора, трещина, застрявший в углублениях протектора камень и т.п.) отчетливо повторилась в отпечатке на протяжении нескольких оборотов колеса. При этом измеряют расстояние между серединами двух последовательных отображений индивидуальной особенности. Наружный диаметр шины рассчитывают по формуле
где D — наружный диаметр шины; S— длина окружной шины; π = 3,14; 1,1 — коэффициент прогиба шины.
Следы ходовой части
В зависимости от свойств следовоспринимающей поверхности следы ходовой части могут быть поверхностными и объемными. Поверхностные, в свою очередь, делятся на следы наслоения (автомобиль проехал по луже, а затем по сухому асфальту) и отслоения (след на загрязненной поверхности). Следы наслоения могут быть позитивными (оставлены окрашенными выступающими частями) и негативными (от частиц грязи, застрявших в углублениях между грунтозацепами колеса).
Объемные следы образуются в результате остаточной деформации грунта (глины, песка, рыхлой земли) и способны передавать не только объемную копию (модель) беговой части протектора, но и данные о боковых его частях.
Колея
Следы беговой дорожки, оставленные колесами, расположенными на одной оси, составляют колею. По ширине колеи можно установить тип транспортного средства (например, автомобиль — легковой или грузовой). Ширина колеи является признаком, характерным либо для определенного типа транспортного средства, либо для транспортных средств нескольких моделей, принадлежащих к одному типу. Ширина колеи измеряется от середины одной дорожки до середины другой. При наличии следов спаренных колес измеряется расстояние между просветами задних спаренных колес, расположенных на одной оси.
База автомобиля
Признаки определения направления движения автомобиля
а) при езде по сыпучему грунту частицы последнего разлетаются по бокам следа в виде веера, раскрытого в сторону, противоположную направлению движения;
б) при переезде луж направленность движения определяется по следу влаги, сходящему на нет;
в) капли ГСМ, а также тормозной жидкости, воды, тосола, падающие с движущегося автомобиля, приобретают заостренную форму и обращены узким концом в сторону движения;
г) рисунок протектора типа «елочка» должен быть обращен открытой частью в сторону движения;
д) при езде по траве ее стебли будут примяты по направлению движения;
е) камень, вдавленный шинами в грунт, будет иметь зазор в лунке со стороны направления движения;
ж) след торможения вначале менее насыщен (меньше интенсивность его окраски), чем в конце торможения;
з) лежащие поперёк дороги ветки, палочки, прутики при переезде через них транспортным средством ломаются и своими концами указывают направление движения.
Следы волочения возникают в тех случаях, когда автомашина совершает наезд на человека или на какой-либо предмет и протаскивает его за собой. На дороге остаются динамические следы волочения в виде смазанных полос. Исследование этих следов позволяет судить о характере происшествия, о том, где произошел наезд и т.д
Фиксация и изъятие следов транспортных средств
Обнаруженные следы транспортных средств на месте происшествия должны быть подробно описаны в протоколе осмотра, в котором указываются:
Кроме перечисленных пунктов в протоколе могут быть указаны и другие данные, имеющие важное значение для конкретного дела.
При фотографировании следов транспортных средств производится узловая и детальная съемка. При узловой съемке следы шин фотографируются на фоне окружающей обстановки, при детальной — фотографируются отдельные фрагменты с отобразившимися в них особенностями. Около следа укладывается масштабная линейка или лента.
Обязательно должны быть сфотографированы по крайней мере три элемента следов транспортных средств:
С объемных следов транспортных средств могут быть изготовлены слепки. Техника изготовления слепков с помощью раствора гипса та же, что и в случаях копирования следов ног. Специфика здесь состоит в том, что иногда приходится производить заливку следов, относительно больших по длине. Поэтому след шины предварительно разделяют на участки длиной 40—50 см тонкими перегородками из стекла, фанеры, картона и т.п., вдавливая их в след. Затем производится заливка гипсовым раствором. Поверхностные следы шин (следы наслоения) копируются с помощью листа резины, предварительно зачищенной наждачной бумагой, фотобумаги, липких пленок.
Трасологическая экспертиза следов транспортных средств
Предметом трасологической экспертизы является установление обстоятельств дела, связанных с идентификацией транспортного средства, и механизма происшествия в целом.
На разрешение такой экспертизы могут быть поставлены следующие вопросы:
Виды рисунка протектора шины
Один из важнейших вопросов при приобретении новых покрышек – это выбор протектора. Некоторых автомобилистов интересуют технические показатели покрышки, другим важнее внешнее оформление колеса. Также есть те, кто пытается подобрать среднее значение этих показателей. Немаловажен также в этом вопросе и рисунок протектора, так как он непосредственно влияет на поведение транспортного средства на дорожном покрытии.
Что такое рисунок протектора шин?
Многие автомобилисты также обращают внимание на рисунок протектора, но чисто из эстетических соображений. Стоит понимать, основное предназначение такого рисунка — это обеспечение сцепления с дорогой.
Протектор — это часть покрышки, которая способствует контакту с дорогой. Протектор шины обеспечивает сцепление с дорожным покрытием в разных погодных условиях. Для этого существует несколько видов рисунков, которые предназначены для тех или иных видов дорожного покрытия. Также протектор помогает выдерживать шинам большие нагрузки, защищает покрышки от быстрого износа и разных повреждений.
Виды рисунка протектора шины
Классификация рисунка протектора
Покрышки делят на несколько видов относительно типа протектора:
Такое количество различных видов рисунков протектора обусловлено необходимостью комфортного движения автомобиля по разным видам дорожного покрытия, это может быть асфальтированная, грунтовая дорога, грязи, песок. Стоит учитывать, что на однородность покрытий также влияет погода. Дождь и снег создают свои условия движения.
По типу беговой дорожки
Симметричный, как даёт понять его название, расположен симметрично, по отношению к центральной полосе, расположенной вдоль всего колеса. Такой направленный рисунок протектора является самым востребованным, так как имеет хорошие качества езды. Шины с таким рисунком нешумные, они обеспечивают хорошую устойчивость транспортного средства при разных погодных условиях. Такие шины нужно устанавливать только в одну сторону.
Симметричный ненаправленный рисунок является универсальным. В таком исполнении покрышки можно переворачивать во время установки, проблем с вождением не возникнет. По цене данный вариант также дешевле шин с направленным видом, поэтому больше востребован. Ненаправленный рисунок больше подходит для ровного однородного покрытия. При езде по мокрой дороге и в грязи шины быстро забиваются инородными предметами. Также в дождь на таком типе шин ездить лучше помедленнее, так как сцепление с дорожным покрытием быстро ухудшается.
Ассиметричный рисунок имеет отличия с каждой стороны по отношению к центральной полосе. Протектор таких шин сочетает в себе несколько полезных характеристик. Одна из сторон представлена шашками для движения по сухому покрытию. А вторая часть разветвленная, чтобы отводить воду.
По соответствию типу дорожного покрытия
Это вид рисунков протектора имеет несколько групп. Шоссейные шины рассчитаны на твердую дорогу. Они отличаются высоким качеством сцепления, невысокой шумностью. Также они способны хорошо отводить воду из пятна контакта.
Универсальные покрышки подходят для езды по ровным твердым дорогам или гравию. Такой вид имеет повышенную шумность. Также шумные будут и грязевые. Они отличаются высоким протектором и позволяют уверенно двигаться в неоднородных дорожных условиях.
Спортивный вид имеет широкий рисунок на боковой части. С помощью таких шин можно двигаться на больших скоростях. Но на грунтовой дороге следует немного снизить скорость. Карьерные же предназначены для передвижения по каменистым дорогам.
По сезонной применяемости
Зимний вид протектора отличается наличием больших канавок и ламелей. Благодаря такому рисунку, у покрышки присутствуют углы, которые позволяют уверенно передвигаться по зимним дорогам. Центральные канавки в шинах позволяют быстрее совершать отвод воды и растаявшего снега. Также рисунок может быть v-образным.
На летних покрышках насечек намного меньше. Такой вид имеет более гладкий рисунок протектора. Летние шины отличаются невысокой шумностью. Всесезонный тип – это смесь летних и зимних видов. Они предназначены для использования в летнее и зимнее время. Чаще всего такие шины имеют ассиметричные рисунки.
Высота протектора
Для легкового типа транспортного средства высота рисунка протектора составляет минимум 1.6 миллиметров. Все покрышки имеют свой индикатор износа, он представляет возвышенности в канавках. Когда протектор сотрётся к этому уровню, это свидетельствует о том, что шина непригодна к эксплуатации.
В некоторых покрышках есть два уровня износа. Один предназначен для использования в летний период, другой – в зимний.
Нарезка протектора шины
В рисунке беговой дорожки есть несколько элементов. Ламели — это небольшие разрезы на выступающих частях. Они позволяют улучшить сцепление с дорогой. Данное свойство хорошо проявляется на мокрой, либо обледенелой дороге. Разрезы выполняют роль липучки, они размещаются в большом количестве на зимних шинах, так как колеса автомобиля для езды в этот период требуют дополнительной устойчивости транспортного средства. Но помимо всех преимуществ, такая часть рисунка также создаёт затруднения в отводе воды.
Центральная часть покрышки имеет ребро, оно налаживает чувствительность с рулевым управлением автомобиля. Также эта часть помогает стабилизировать автомобиль при движении на высоких скоростях.
К задней части и по сторонам помогают отводить воду продольные канавки. Чем они больше по размерам, тем лучше уходит вода и растаявший снег. Бороздки, размещенные под наклоном, позволяют отводить влагу на любых поворотах. Чтобы автомобиль не скользил на поворотах, на шинах размещаются плечевые шашечки.
Рядом с дренажными канавками расположены снежные кармашки. Они представляют собой некие выемки, когда они заполняются, сцепление с дорожным покрытием только улучшается. Для того чтобы устранить большое количество влаги, на шинах присутствуют широкие боковые канавки. Они удаляют влагу поперёк покрышки за счёт разницы давлений.
Советы по выбору резины
Итак, кроме внешнего вида колеса ещё важно выбрать и тип рисунка протектора. Таким образом удастся обезопасить себя и свое транспортное средство при движении на разных видах дорожного покрытия.
При выборе шины нужно в первую очередь обратить внимание на изготовителя колес. Известные производители выпускают изделия высокого качества, но такой вид покрышек будет стоить в разы дороже не разрекламированных и малоизвестных производителей. При этом характеристики изделий могут быть на похожем уровне. Но все же, не стоит испытывать судьбу и приобретать шины от неизвестных производителей с сомнительным качеством и безопасностью.
Высокая цена на колеса может быть обусловлена не только брендом, но и характеристиками изделия. В более дорогих комплектах уровень шума меньше, а тормозной путь лучше. Также они способны уменьшить расход горючего, улучшить ходовые качества автомобиля и его характеристики.
При выборе покрышек нужно обращать внимание на рейтинги покрышек. Шины тестируют, таким образом можно выбрать между двумя похожими комплектами лучшее изделие, опираясь на результаты тестов.
При подборе нужно учитывать рекомендации производителя автомобиля по параметрам покрышек. Если покупать колеса больше, либо меньше диаметром, можно ухудшить управляемость автомобиля.
Следует помнить о том, что нельзя покупать колеса с разными рисунками протектора. На автомобиле все четыре колеса должны иметь одинаковый рисунок. Если он будет отличаться, то сцепление с дорогой будет тоже разным, а этого допускать нельзя.
БЕГОВАЯ ДОРОЖКА ПРОТЕКТОРА ПНЕВМАТИЧЕСКОЙ ШИНЫ И ФОРМУЮЩИЙ ЭЛЕМЕНТ ВУЛКАНИЗАЦИОННОЙ ФОРМЫ ДЛЯ ТАКОЙ БЕГОВОЙ ДОРОЖКИ Российский патент 2006 года по МПК B60C11/12 B29D30/06
Описание патента на изобретение RU2269426C2
Предлагаемое изобретение касается беговой дорожки протектора пневматической шины и, в частности, объемных рисунков таких беговых дорожек. Изобретение касается также формующего элемента, предназначенного для установки в вулканизационную форму, используемую для формования таких беговых дорожек протектора.
Известно, что пневматическая шина, предназначенная для оснащения тяжелого транспортного средства типа «poids lourd», содержит арматуру каркаса, поверх которой снаружи в радиальном направлении располагается арматура гребня, причем поверх этой арматуры гребня располагается беговая дорожка протектора, наружная в радиальном направлении поверхность которой образует поверхность качения данной пневматической шины и предназначена для вхождения в непосредственный контакт с дорогой в процессе качения этой пневматической шины. Для удовлетворения требований надлежащего сцепления с дорогой, а также для удаления воды в процессе качения по мокрой дороге, известен способ оснащения беговой дорожки протектора множеством канавок, имеющих в основном ориентацию в продольном (или окружном) направлении и в поперечном направлении (то есть в направлении, образующем в среднем отличный от нуля угол с продольным направлением); эти канавки ограничивают элементы объемного рисунка (ребра, блоки), представляющие верхнюю поверхность снаружи в радиальном направлении, образующую часть поверхности качения беговой дорожки протектора, и боковые поверхности, ограничивающие эти канавки.
Для некоторых типов пневматических шин типа «poids lourd», в частности пневматических шин, предназначенных для использования на заснеженном грунте, необходимо совершенствовать характеристики сцепления и движущей способности этих пневматических шин при любой степени износа беговой дорожки протектора для того, чтобы возможно дольше сохранить исходные характеристики таких пневматических шин. Для того чтобы улучшить характеристики сцепления пневматической шины с грунтом, известен прием реализации, по меньшей мере, одной насечки (то есть разреза, ширина которого не превышает 2 мм, и который по существу не создает свободного полого объема в протекторе) на множестве элементов объемного рисунка протектора; чем больше выполнено таких насечек и чем больше реализовано таким образом острых кромок на беговой дорожке протектора, тем лучшими оказываются характеристики сцепления. Для того чтобы возможно дольше сохранить характеристики сцепления беговой дорожки протектора по мере ее износа, необходимо предусмотреть насечки, которые имели бы глубину, равную или близкую к глубине продольных канавок (глубина этих продольных канавок может определять полезную толщину беговой дорожки протектора с точки зрения количества необходимой для использования резины). К сожалению, такая реализация несовместима с получением элементов объемного рисунка протектора, имеющих достаточную жесткость (главным образом под действием усилий, возникающих в зоне контакта пневматической шины с дорогой), и даже может в определенных условиях качения приводить к отрыву резины от беговой дорожки протектора (вследствие ломкости пластин резины малой толщины).
Некоторое промежуточное техническое решение было предложено и поставлено на рынок данным Заявителем (под названием XDN), причем это техническое решение состоит в реализации в блоках объемного рисунка протектора насечек, проходящих от поверхности беговой дорожки протектора при отсутствии износа до глубины, по существу равной половине толщины этой беговой дорожки. Разумеется, такой объемный рисунок протектора позволяет обеспечить удовлетворительные характеристики при отсутствии износа и вплоть до состояния половинного износа, но он не позволяет сохранить эти характеристики на протяжении всего потенциального срока службы данной пневматической шины (то есть до полного износа беговой дорожки протектора), поскольку острые кромки, сформированные этими насечками, исчезают после износа, по существу равного половине толщины беговой дорожки протектора.
Цель данного изобретения состоит в том, чтобы предложить беговую дорожку протектора, объемный рисунок которой позволяет добиться существенного улучшения характеристик сцепления на протяжении всего срока эксплуатации данной пневматической шины, обеспечивая при этом среднюю скорость износа беговой дорожки протектора (то есть среднюю скорость потери толщины беговой дорожки протектора в процессе качения), которая будет более высокой, чем средняя скорость износа беговой дорожки протектора для пневматических шин, снабженных насечками, выполненными до половины глубины.
В последующем изложении термин «разрез» может означать либо канавку, средняя ширина которой превышает или равна 2 мм, либо насечку, средняя ширина которой имеет величину менее 2 мм; как в одном, так и в другом случае этот разрез может открываться в по меньшей мере один другой разрез, или может не открываться вообще (так называемый «глухой» разрез), или может открываться только в один разрез (так называемый «несквозной» разрез).
Поставленная цель достигается при помощи беговой дорожки протектора, предназначенной для пневматической шины, содержащей арматуру каркаса, поверх которой снаружи в радиальном направлении располагается арматура гребня, причем поверх этой арматуры гребня располагается изготовленная из резины беговая дорожка протектора, наружная в радиальном направлении поверхность которой образует поверхность качения данной пневматической шины и предназначена для вхождения в непосредственный контакт с дорогой в процессе качения этой пневматической шины. Беговая дорожка протектора имеет максимальную толщину Pb, которая может быть изношена в процессе качения, и снабжена множеством разрезов, имеющих в основном поперечную ориентацию.
Беговая дорожка протектора в соответствии с предлагаемым изобретением отличается тем, что:
— при отсутствии износа некоторые поперечные разрезы формируют на поверхности качения зоны в виде полостей, средняя ширина которых Lt превышает или равна 2 мм, и максимальная глубина которых Pt составляет, по меньшей мере, 30% от толщины Pb подлежащей износу беговой дорожки протектора и не превышает 80% от той же толщины Pb, причем другие поперечные разрезы формируют на той же поверхности качения насечки, средняя ширина которых Li’ меньше 2 мм, и глубина которых Pi имеет величину в диапазоне от 30% до 80% от глубины Pt;
— при отсутствии износа совокупность зон в виде полостей, открывающихся на поверхность качения, образует общий объем полостей VO, составляющий, по меньшей мере, 10% от объема подлежащей износу беговой дорожки протектора;
— множество насечек, продолжающихся, начиная с глубины Pi, зонами в виде полостей, имеющими среднюю ширину Li», превышающую или равную 2 мм, таким образом, чтобы после однородного износа беговой дорожки протектора, по существу равного толщине, соответствующей глубине Pt зон в виде полостей, открывающихся на поверхность качения протектора при отсутствии износа, объем V1 зон в виде полостей, открывающихся на новую поверхность качения, имел величину в диапазоне от 50% до 150% первоначального объема VO.
Предпочтительно, чтобы объемный рисунок протектора пневматической шины в соответствии с предлагаемым изобретением дополнительно содержал канавки окружной ориентации, имеющие среднюю глубину Pc и предназначенные для облегчения отвода воды в случае качения по дороге, покрытой водой, и улучшения сцепления с дорогой в поперечном направлении. Объем VO зон в виде полостей рассчитывается путем интегрирования в объем поперечных канавок объема продольных канавок. Глубина Pc по существу соответствует толщине Pb беговой дорожки протектора, подлежащей износу при качении пневматической шины.
Под подлежащей износу толщиной Pb беговой дорожки протектора следует понимать границу износа данной беговой дорожки протектора, начиная с которой желательно осуществить обновление этой беговой дорожки, например, путем формирования нового протектора.
Пневматическая шина в соответствии с предлагаемым изобретением позволяет иметь характеристики при отсутствии износа, сопоставимые с характеристиками пневматической шины, снабженной множеством острых кромок, входящих в контакт с дорогой, имея высокую способность к удалению (и «сохранению» в результате функции резервуара, реализуемой зонами в виде полостей) благодаря наличию канавок продольной ориентации и благодаря наличию множества полых зон поперечной ориентации, основная характеристика которых состоит в том, что они не закрываются в контакте с дорогой. Эти характеристики получены при сохранении для беговой дорожки протектора с жесткостью, более высокой, чем та жесткость, которая будет обеспечена с использованием таких же разрезов, но имеющих ту же глубину, что и канавки продольной ориентации.
Кроме того, эти вполне удовлетворительные характеристики сохраняются на протяжении значительной части возможного срока эксплуатации, соответствующего максимальному износу беговой дорожки протектора, поскольку после частичного износа (то есть износа, лишь частично затрагивающего толщину беговой дорожки протектора) новые зоны в виде полостей открываются на новую поверхность качения для того, чтобы стать активными в зоне контакта пневматической шины с дорогой.
Предпочтительно насечки ограничены основными стенками, содержащими средства, предназначенные для механической блокировки одной стенки на другой; с этой целью упомянутые стенки могут иметь форму зигзага или волнистую форму или могут представлять рельеф, предназначенный для реализации механической блокировки этих стенок друг напротив друга в процессе сплющивания беговой дорожки протектора для того, чтобы воспрепятствовать существенному снижению жесткости этой беговой дорожки; такие разрезы описаны, в частности, в US 5783002.
Предпочтительно беговая дорожка протектора пневматической шины в соответствии с предлагаемым изобретением содержит, по меньшей мере, одно ребро, снабженное множеством разрезов, причем каждый разрез на виде поверхности качения при отсутствии износа имеет:
— по меньшей мере, одну первую часть, ширина которой превышает 2 мм, и глубина которой Pt имеет величину в диапазоне от 30% до 80% от общей глубины упомянутого разреза, причем эта часть формирует зону в виде полости, продолженную в толщине беговой дорожки протектора, по меньшей мере, одной частью, имеющей ширину менее 2 мм и формирующей насечку,
— по меньшей мере, одну вторую часть, имеющую ширину менее 2 мм и глубину, величина которой заключена в диапазоне от 30% до 80% от полной глубины упомянутого разреза, причем эта вторая часть формирует насечку и располагается в осевом продолжении упомянутой первой части, и эта вторая часть продолжается в толщине беговой дорожки протектора, по меньшей мере, одной частью, ширина которой превышает 2 мм, для формирования новой зоны в виде полости,
— совокупность зон в виде полостей, открывающихся на поверхность качения, образует полный объем полостей, по меньшей мере, равный 10% от общего подлежащего износу объема беговой дорожки протектора,
причем эта беговая дорожка протектора отличается тем, что после однородного износа, равного или превышающего глубину упомянутой первой части, полный объем зон в виде полостей, открывающихся на поверхность качения, имеет величину в диапазоне от 80% до 150% от первоначального полного объема зон в виде полостей, открывающихся на поверхность качения при отсутствии износа.
Другая цель данного изобретения состоит в том, чтобы предложить формующий элемент, предназначенный для оснащения вулканизационной формы, используемой для формования беговой дорожки протектора в соответствии с изобретением.
Формующий элемент в соответствии с предлагаемым изобретением содержит первую и вторую области, причем первая область предназначена для закрепления в вулканизационной форме данной пневматической шины, содержащей поверхность формования, и вторая область располагается в продолжении первой области таким образом, чтобы она выступала на поверхности формования вулканизационной формы и обеспечивала формование разрезов в резиновой беговой дорожке. Предлагаемый формующий элемент отличается тем, что вторая область образована множеством относительно тонких частей, имеющих среднюю толщину менее 2 мм, и множеством относительно толстых частей, имеющих среднюю толщину, превышающую или равную 2 мм, причем, по меньшей мере, одна тонкая часть продолжена вдоль двух различных направлений при помощи толстых частей. Предпочтительно, чтобы различные направления являлись перпендикулярными между собой, причем одно из этих направлений может соответствовать направлению, перпендикулярному поверхности качения подлежащей формованию беговой дорожки протектора.
В случае вулканизационной формы, содержащей очень большое число формующих элементов, оправданным является то, чтобы толстые части имели толщину, по меньшей мере, равную удвоенной толщине тонких частей (для того, чтобы обеспечить существенный технический эффект) и не превышающую десятикратной толщины этих тонких частей (для того, чтобы обеспечить удобное извлечение данной пневматической шины из ее вулканизационной формы).
Предпочтительно, чтобы поверхности тонких частей предлагаемого формующего элемента имели геометрию, способную создавать зацепление стенок насечек; интересно также предусмотреть отличную от нулевой шероховатость для того, чтобы ограничить относительные перемещения упомянутых стенок.
Другие характеристики и преимущества предлагаемого изобретения будут лучше поняты из приведенного ниже описания не являющихся ограничительными вариантов осуществления этого изобретения со ссылками на сопроводительные чертежи, где
— фиг.1 представляет схематический вид в плане беговой дорожки протектора в соответствии с первым вариантом осуществления предлагаемого изобретения;
— фиг.2 представляет собой схематический вид в разрезе по линии II-II беговой дорожки протектора по фиг.1;
— фиг.3 представляет собой схематический вид в разрезе по линии III-III беговой дорожки протектора по фиг.1;
— фиг.4 представляет собой частичный схематический вид в плане беговой дорожки протектора в соответствии со вторым вариантом осуществления предлагаемого изобретения;
— фиг.5 представляет собой схематический вид в разрезе по линии V-V, показанной на фиг.4, второго варианта осуществления беговой дорожки протектора;
— фиг.6 представляет собой схематический вид в разрезе по линии VI-VI, показанной на фиг.4, второго варианта осуществления беговой дорожки протектора;
— фиг.7 представляет собой частичный схематический вид в плане беговой дорожки протектора в соответствии со вторым вариантом осуществления изобретения после износа;
— фиг.8 представляет собой схематический вид формующего элемента в соответствии с предлагаемым изобретением, предназначенного для оснащения вулканизационной формы, обеспечивающей формование беговой дорожки протектора.
На фиг.1 представлен схематический вид в плане поверхности качения беговой дорожки протектора 1 пневматической шины типоразмера 315/80 R 22,5 при отсутствии износа. Беговая дорожка протектора 1 в соответствии с этим первым вариантом осуществления изобретения содержит семь окружных рядов блоков, ограниченных канавками в основном продольной ориентации 4 (или окружной ориентации на пневматической шине) и поперечными канавками 5, 6; при этом блоки 2 крайних рядов данной беговой дорожки имеют конфигурацию, которая отличается от конфигурации пяти центральных рядов.
Канавки в основном продольной ориентации 4 имеют среднюю ширину, составляющую 5 мм, и максимальную глубину, составляющую 23 мм.
Поперечные канавки 5, разделяющие блоки 3 центральных рядов, имеют глубину, составляющую 19 мм, и среднюю ширину, составляющую 8 мм, на поверхности беговой дорожки протектора при отсутствии износа, причем эта их протяженность постепенно уменьшается до 4 мм в направлении к донной части этих канавок 5. Среднее расстояние, разделяющее две последовательно расположенные поперечные канавки 5, составляет 52 мм.
Пять центральных рядов подобны между собой с точностью до некоторого смещения в окружном направлении и используются для снижения шума в процессе качения, излучаемого данным рельефным рисунком протектора.
Каждый из блоков 3 в составе пяти центральных рядов содержит три разреза 71, 72, 73, открывающихся на поверхность качения 7 беговой дорожки протектора при отсутствии износа; три этих разреза имеют глубины соответственно H1, H2, H3, равные в рассматриваемом здесь случае глубине Pb беговой дорожки протектора, подлежащей износу (в данном случае Pb=30 мм). Первый разрез 71 разделяет каждый блок 3 на две по существу равные части и открывается на поверхность качения 7 и в две продольные канавки 4, соседствующие с данным блоком 3. По одну и по другую стороны от этого первого разреза 71 предусмотрены два других разреза 72, 73, открывающихся только на поверхность качения 7 беговой дорожки протектора при отсутствии износа и не открывающихся в продольные канавки. Полные значения глубины этих разрезов 71, 72, 73 превышают глубину Pt продольных канавок 4 и составляют в рассматриваемом здесь случае 30 мм.
Как это можно видеть на фиг.2, иллюстрирующей разрез по линии II-II, реализованный в толще блока 3 беговой дорожки протектора, показанной на фиг.1, разрез 71, разделяющий каждый блок 3 центральных рядов на две части, сформирован первой насечкой 71′, которая имеет среднюю ширину Li’, по существу равную 0,4 мм и продолженную от глубины, составляющей 14 мм, зоной в виде полости 71″. Эта зона в виде полости 71″ представлена в форме канала, имеющего ширину Li», составляющую 4 мм, и открывающегося в поперечные канавки 4, ограничивающие данный блок 3, причем упомянутый канал проходит на глубине, составляющей 16 мм.
Каждый из разрезов 72, 73, предусмотренных по одну и по другую стороны от разреза 71, сформирован глухой насечкой, то есть насечкой, не открывающейся в поперечные канавки 4 (соответственно глухими насечками 72′, 73′), имеющей среднюю ширину, по существу равную 0,4 мм, причем продолжением этой глухой насечки от глубины, составляющей 14 мм, является зона в виде полости 72″ и 73″. Эти зоны в виде полостей, имеющие ширину, равную 2 мм, также являются глухими, поскольку они не открываются в поперечные канавки 4, ограничивающие данный блок 3. Геометрические размеры выполненных в виде полостей частей 71″, 72″, 73″ определяются таким образом, чтобы обеспечить после износа беговой дорожки протектора, превышающего или равного глубине поперечных канавок 5, сформированных на беговой дорожке протектора при отсутствии износа, полный объем полостей, по существу идентичный объему полостей, соответствующих поперечным канавкам 5, и даже превышающий этот объем.
Для того чтобы в возможно большей степени снизить влияние наличия разрезов на жесткость каждого блока 3, стенки, ограничивающие части разрезов, формирующие насечки 71′, 72′, 73′, содержат множество повторяющихся рисунков в форме выступающего рельефа и в форме полостей, причем выступающий рельеф одной из стенок предназначен для взаимодействия с полостями располагающейся против нее стенки.
Разумеется, можно реализовать разрезы 71, 72, 73, имеющие различную полную глубину, которая, кроме того, может превышать глубину Pb; кроме того, эти разрезы могут иметь насечки различной глубины и/или ширины.
В том, что касается двух рядов, располагающихся по бокам на краях беговой дорожки протектора, на фиг.3 показана в разрезе по линии III-III толщина блока 2 края беговой дорожки протектора по фиг.1. Каждый резиновый блок 2 ограничен в продольном направлении канавками в основном поперечной ориентации 6, имеющими среднюю ширину, составляющую 8 мм на поверхности этой беговой дорожки при отсутствии износа и постепенно уменьшающуюся до 4 мм в направлении донной части канавок; глубина Pt’ поперечных канавок 6 составляет 16 мм. Среднее расстояние, разделяющее две последовательно расположенные поперечные канавки 6, составляет 52 мм.
Каждый из блоков 2 двух крайних рядов содержит три разреза 81, 82, 83, открывающихся на поверхность качения при отсутствии износа. Первый разрез 81 разделяет каждый блок 2 на две по существу равные части и открывается одновременно на поверхность качения 8, в продольную канавку 4, примыкающую к данному блоку 2, и в осевом направлении наружу от этой беговой дорожки протектора. По одну и по другую стороны от этого первого разреза 81 предусмотрены два других разреза 82, 83, открывающихся только на поверхность качения 8 при отсутствии износа и не имеющих выхода в продольную канавку 4 или наружу в осевом направлении от этой беговой дорожки. Полная глубина каждого из этих разрезов в рассматриваемом здесь случае составляет 21 мм.
Как это можно видеть на фиг.3, первый разрез 81, имеющий глубину H1′, составляющую 21 мм, разделяет каждый блок 2 крайних рядов на две части и формирует первую насечку 81′, средняя ширина которой по существу равна 0,4 мм, и которая продолжена от глубины, равной 13 мм, зоной в виде полости 81″. Эта зона в виде полости 81″ сформирована каналом, ширина которого равна 3 мм, открывающимся в продольную канавку, ограничивающую данный блок, и в направлении наружу от беговой дорожки, и проходящим на глубине, равной 8 мм.
Разрезы 82, 83, имеющие глубину соответственно H2′, H3′, каждая из которых равна глубине H1′, выполнены по одну и по другую стороны от этого первого разреза 81 и сформированы насечкой, не открывающейся в боковом направлении, соответственно 82′, 83′, средняя ширина которой по существу равна 0,4 мм, причем продолжением этой насечки от глубины, равной 13 мм, является зона в виде полости соответственно 82″, 83″. Эти зоны в виде полостей, имеющие ширину, равную 3 мм, также являются глухими, поскольку они не открываются в боковом направлении наружу по отношению к блоку 2. Размеры частей в виде полостей 81″, 82″, 83″ выбираются (для каждого блока крайних рядов беговой дорожки протектора) таким образом, чтобы после износа беговой дорожки протектора, превышающего или равного глубине Pt (в рассматриваемом здесь случае Pt=16 мм) поперечных канавок 6, присутствующих при отсутствии износа, объем полостей на каждом крайнем ряду беговой дорожки протектора, был по существу идентичен и даже превышал объем полостей, соответствующих поперечным канавкам 6 при отсутствии износа.
Сравнительные испытания были проведены на пневматических шинах типоразмера 315/80 R 22,5, имеющих одну и ту же внутреннюю структуру и отличающихся только их беговыми дорожками протектора. Пневматическая шина, служащая контрольным образцом (результаты испытаний которой приняты за базу 100), соответствует пневматической шине, распространяемой на рынке под маркой XDN, тогда как пневматическая шина в соответствии с предлагаемым изобретением снабжена беговой дорожкой протектора, соответствующей беговой дорожке, описанной выше со ссылками на фиг.1-3.
— средняя скорость движения 70 км/час,
— соответствующая пневматическая шина установлена в четыре позиции на одной ведущей оси тяжелого транспортного средства типа «poids lourd».
В тесте на износ, проводимом на автодроме, измеряют среднюю потерю веса после пробега заданного километража; для идентичной потери веса отмечается, что пневматическая шина в соответствии с предлагаемым изобретением позволяет достигнуть пробега, в 1,5 раза превышающего выраженный в километрах пробег пневматической шины, выбранной в данном случае в качестве контрольного образца.
В тесте на сцепление измеряют эту характеристику на дороге, покрытой слоем воды (толщиной 2 мм), замеряя при этом длину тормозного пути.
Кроме улучшения этой характеристики, отмеченного при равномерном износе и неравномерном износе и сохранения и даже улучшения данной характеристики сцепления с мокрым грунтом объемный рисунок протектора в соответствии с предлагаемым изобретением позволяет достигнуть температуры функционирования в резине беговой дорожки протектора, которая оказывается на несколько градусов по шкале Цельсия ниже по сравнению с контрольной пневматической шиной.
Во втором варианте осуществления изобретения беговая дорожка протектора в соответствии с предлагаемым изобретением содержит множество продольных ребер, ограниченных канавками, ориентированными в продольном направлении. На фиг.4 представлен частичный схематический вид в плане поверхности контакта 10′ (предназначенной для вхождения в непосредственный контакт с дорогой) одного ребра 10, ограниченного двумя продольными канавками 11, причем это ребро снабжено множеством разрезов 12, 13, ориентированных в поперечном направлении и отстоящих друг от друга на одинаковые расстояния в продольном направлении.
Все разрезы 12, 13, сформированные на этом ребре 10, открываются на поверхность контакта 10′ данного ребра с дорогой и в боковом направлении открываются на краях этого ребра в продольные канавки 11.
Первая серия разрезов содержит множество разрезов 12, представляющих начиная от поверхности качения ребра 10 среднюю часть 121, имеющую ширину Lt, равную 8 мм, и глубину Pt, равную 12 мм, для формирования зоны в виде полости, причем эта средняя часть 121 продолжена в боковом направлении частями 122, 123, имеющими ширину Li, равную 0,4 мм, каждая из которых образует насечку. Вставленная с равномерным интервалом по отношению к этой первой серии вторая серия разрезов содержит множество разрезов 13, содержащих две части 132, 133 одинаковой ширины, составляющей 8 мм, и имеющих глубину Pt’, равную 12 мм, для формирования зон в виде полостей, причем эти зоны обрамляют среднюю часть 131, образующую насечку шириной 0,4 мм.
Разрезы 12, 13, выполненные в ребре 10, представляют в поперечном направлении этого ребра и в толщине этого ребра чередование зон в виде полостей и в виде насечек, как это хорошо видно на фиг.5 и 6, демонстрирующих соответственно виды в разрезе по линиям V-V и VI-VI беговой дорожки протектора при отсутствии износа (так, как показано на фиг.4).
Для удобства восприятия здесь показано только одно чередование в толщине беговой дорожки, однако, для специалиста в данной области техники не составит труда распространить такое техническое решение на случай множества зон в виде полостей, имеющих ширину, превышающую 2 мм, в сочетании с множеством насечек, имеющих ширину менее 2 мм.
Предпочтительно, чтобы средняя ширина каждой части разрезов, образующих насечку, была меньше или равна 0,6 мм, и средняя толщина каждой части разрезов, формирующих зону в виде полости, составляла, по меньшей мере, 3 мм.
После износа беговой дорожки протектора в процессе качения, по существу соответствующего уменьшению толщины этой беговой дорожки на 12 мм по глубине зон в виде полостей, открывающихся на поверхность качения при отсутствии износа, (как можно видеть на фиг.7) части, образующие насечки 122, 123, 132, 133 первой и второй серий разрезов 12, 13, превращаются в расширенные зоны глубиной 12 мм, тогда как широкие части 121 превращаются в узкие зоны 121′, подобные первым насечкам. При этом надо понимать, что полный объем зон в виде полостей при любом уровне износа беговой дорожки протектора вплоть до глубины, не превышающей 75% от полной толщины подлежащей износу беговой дорожки, всегда превышает первоначальный объем зон в виде полостей пневматической шины при отсутствии износа.
Таким образом, беговая дорожка протектора в соответствии с предлагаемым изобретением имеет при отсутствии износа жесткость, более высокую, чем такая же беговая дорожка протектора, содержащая то же количество разрезов, но имеющих ширину в диапазоне от 4 мм до 16 мм и глубину, равную толщине упомянутой беговой дорожки. Это достигается при сохранении жесткости под действием касательного усилия к поверхности беговой дорожки в контакте с дорогой, причем это усилие ориентировано в окружном направлении.
На фиг.5 можно видеть, что зоны в виде полостей 131′, сформированные под поверхностью качения беговой дорожки протектора при отсутствии износа, предусмотрены для того, чтобы появиться перед тем, как зоны в виде полостей 121, открывающиеся на поверхность качения беговой дорожки при отсутствии износа, окажутся исчезнувшими, таким образом, чтобы объемный рисунок протектора сохранял на протяжении всего срока его использования достаточное количество зон в виде полостей с тем, чтобы представлять удовлетворительные характеристики в процессе качения данной пневматической шины по дороге, покрытой, например, водой.
Предпочтительно, чтобы упомянутые выше насечки были выполнены зигзагообразными в, по меньшей мере, одном направлении или представляли на ограничивающих их стенках повторяющиеся рисунки в виде полостей и рельефов, предназначенные для взаимного переплетения друг с другом таким образом, чтобы реализовать механическую блокировку упомянутых стенок, в частности, в зоне контакта беговой дорожки протектора с дорогой. Разрезы объемного рисунка протектора в соответствии с предлагаемым изобретением могут, кроме того, представлять наклоны, отличные от нуля, по отношению к перпендикуляру к поверхности качения. Кроме того, они могут представлять средние направления на поверхности качения, которые не являются прямолинейными, но принимают любую подходящую в данном случае геометрическую форму.
Вариант осуществления изобретения, который только что был описан со ссылками на фиг.4-7, может быть применен к случаю беговой дорожки протектора, не содержащей канавки продольной ориентации. В таком случае упомянутые разрезы могут затрагивать или не затрагивать всю ширину беговой дорожки.
На фиг.8 представлен частичный схематический вид формующего элемента 14, предназначенного для оснащения вулканизационной формы, обеспечивающей формование беговой дорожки с протектором в соответствии с предлагаемым изобретением. Этот формующий элемент 14 построен вокруг средней плоскости, причем толщина формующего элемента перпендикулярна к этой средней плоскости; этот формующий элемент содержит первую область (не показанную на упомянутом чертеже), предназначенную для закрепления в вулканизационной форме, и вторую область (представленную на фиг.8), предназначенную для размещения выступающим образом на поверхности формования данной формы для того, чтобы обеспечить формование разреза в резиновой беговой дорожке. Вторая область формующего элемента содержит множество частей 141, 142 с различной средней толщиной, причем эти части распределены чередующимся образом в двух направлениях, располагающихся в средней плоскости упомянутого элемента и перпендикулярных между собой (эти направления обозначены на фиг.8 позициями X и Y).
Множество частей различной средней толщины содержит относительно тонкие части 141 со средней толщиной E1, составляющей 0,6 мм, и относительно толстые части 142 со средней толщиной E2, составляющей 4 мм. На поверхности раздела между представленной здесь частью формующего элемента и частью этого формующего элемента, предназначенной для закрепления в форме, находится часть со средней толщиной E2, обрамленная двумя частями со средней толщиной E1. Части со средней толщиной E1 имеют геометрические параметры, представляющие волнистость одновременно в направлении X и в направлении Y. Часть со средней толщиной E1, равной 0,6 мм, продолжается в одном и в другом направлениях X и Y при помощи части со средней толщиной E2, равной 4 мм; высоты соответственно K1 и K2 каждой части в рассматриваемом здесь случае являются по существу идентичными. Под высотой области в данном случае следует понимать длину упомянутой области, измеренную в направлении, по существу перпендикулярном поверхности формования в том случае, когда данный элемент установлен в вулканизационную форму (в представленном здесь случае в направлении, параллельном направлению X).
Предпочтительно, чтобы отношение между средней толщиной толстых частей 142 и средней толщиной тонких частей 141 составляло менее 10 для облегчения освобождения изделия от формы. Кроме того, соединительные зоны переменной толщины могут быть предусмотрены между тонкими частями и толстыми частями для облегчения освобождения изделия от формы.
Похожие патенты RU2269426C2
Иллюстрации к изобретению RU 2 269 426 C2
Реферат патента 2006 года БЕГОВАЯ ДОРОЖКА ПРОТЕКТОРА ПНЕВМАТИЧЕСКОЙ ШИНЫ И ФОРМУЮЩИЙ ЭЛЕМЕНТ ВУЛКАНИЗАЦИОННОЙ ФОРМЫ ДЛЯ ТАКОЙ БЕГОВОЙ ДОРОЖКИ
Формула изобретения RU 2 269 426 C2
1. Беговая дорожка протектора (1) с наружной поверхностью, предназначенной для формирования поверхности качения пневматической шины и обеспечения вхождения в непосредственный контакт с дорогой в процессе качения этой пневматической шины, причем дорожка (1) имеет максимальную толщину Pb, изнашиваемую в процессе качения, снабжена множеством разрезов (5, 6, 71, 72, 73, 81, 82, 83), имеющих по существу поперечную ориентацию, и содержит, по меньшей мере, одно ребро, снабженное множеством разрезов, причем каждый разрез на поверхности качения при отсутствии износа имеет
по меньшей мере одну первую часть, ширина которой превышает 2 мм, а глубина которой Pt имеет величину в диапазоне от 30 до 80% от полной глубины разреза, причем первая часть формирует зону в виде полости, продолжением которой в толщине беговой дорожки протектора является по меньшей мере одна часть, имеющая ширину менее 2 мм и формирующая насечку,
по меньшей мере одну вторую часть, ширина которой составляет менее 2 мм, а глубина имеет величину от 30 до 80% от полной глубины разреза, причем вторая часть формирует насечку и расположена в осевом продолжении первой части, при этом продолжением второй части в толщине беговой дорожки протектора является по меньшей мере одна часть, ширина которой превышает 2 мм, для формирования новой зоны в виде полости,
причем совокупность зон в виде полостей, открывающихся на поверхность качения, образует полный объем этих полостей, по меньшей мере равный 10% от общего подлежащего износу объема беговой дорожки протектора,
отличающаяся тем, что после однородного износа, равного или превышающего глубину первой части, полный объем зон в виде полостей, открывающихся на поверхность качения, имеет величину от 80 до 150% от первоначального полного объема зон в виде полостей, открывающихся на поверхность качения при отсутствии износа, причем средняя ширина частей разрезов, образующих насечку (71′, 72′, 73′, 81′, 82′, 83′), имеет величину менее 2 мм, а средняя толщина частей разрезов, образующих зоны в виде полостей (71», 72», 73», 81», 82», 83»), имеет величину, превышающую или равную 2 мм и не превышающую десятикратную величину средней толщины частей разрезов, образующих насечку.
2. Дорожка (1) по п.1, отличающаяся тем, что средняя ширина каждой части разрезов, образующих насечку (71′, 72′, 73′, 81′, 82′, 83′), меньше или равна 0,6 мм, причем средняя толщина каждой части разрезов, образующих зону в виде полости (71», 72», 73», 81», 82», 83»), по меньшей мере, равна 3 мм. 3. Дорожка (1) по любому из пп.1 и 2, отличающаяся тем, что, по меньшей мере, одна из частей разрезов, образующих насечки, ограничена двумя резиновыми стенками, содержащими средства для обеспечения возможности зацепления одной стенки за другую для ограничения по меньшей мере некоторых относительных перемещений этих стенок. 4. Пневматическая шина, отличающаяся тем, что она снабжена беговой дорожкой протектора по любому из пп.1-3, причем шина предназначена для оснащения ведущей оси большегрузного транспортного средства. 5. Формующий элемент (14) для оснащения вулканизационной формы для формования разреза в беговой дорожке протектора пневматической шины, содержащий первую область для закрепления формующего элемента в вулканизационной форме пневматической шины, и вторую область, располагающуюся выступающим образом на поверхности формования вулканизационной формы для формования разреза в резиновой беговой дорожке, отличающийся тем, что вторая область образована множеством тонких частей (141), имеющих среднюю толщину менее 2 мм, и множеством толстых частей (142), имеющих среднюю толщину, превышающую или равную 2 мм, причем по меньшей мере одна тонкая часть продолжена вдоль двух различных направлений при помощи толстой части. 6. Формующий элемент (14) по п.5, отличающийся тем, что толстые области (142) имеют среднюю толщину (Е2), не превышающую десятикратную среднюю толщину (Е1) тонких частей (141) для облегчения снятия формы.